Skip to main content
Log in

Reactive oxygen species effect PASMCs apoptosis via regulation of dynamin-related protein 1 in hypoxic pulmonary hypertension

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The high level of reactive oxygen species and up-regulation of mitochondrial fission protein dynamin-related protein-1, both of which involved in pulmonary artery smooth muscle cells (PASMCs) apoptosis, have been detected in the lungs of rodent pulmonary arterial hypertension models. However, the regulatory mechanisms between ROS and DRP1 are poorly understood. In this study, ROS inhibitor, hypoxic rodent PAH models, small interfering RNA, polymerase chain reaction, Western blot, flow cytometry, immunohistochemistry and immunofluorescence were used. We determined that ROS, mainly derive from mitochondria, mediate mitochondria fission of PASMCs contributing to pulmonary vascular remodeling. Meanwhile, we also observed that hypoxia-induced DRP1 expression depends on ROS generation, especially mitochondrial ROS (mROS). Moreover, the levels of ROS and mROS evoked by hypoxia were regulated by DRP1. Furthermore, we verified the apoptosis suppression of PASMCs under hypoxia due to the interaction between ROS/mROS and DRP1. Our study reveals a novel mechanism of hypoxia-induced pulmonary vascular remodeling, suggesting a new therapeutic strategy which is targeting on the positive feedback of ROS/mROS-DRP1 for the treatment of PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCFDA:

2′,7′-Dichlorofluorescin diacetate

DRP1:

Dynamin-related protein-1

MFC:

Mitochondrial fragmentation count (MFC)

NAC:

N-acetylcysteine

PASMCs:

Pulmonary artery smooth muscle cells

PAH:

Pulmonary arterial hypertension

PVR:

Pulmonary vascular remodeling

ROS:

Reactive oxygen species

TEMPO/MitoTEMPO:

2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride

References

  • Adesina SE, Kang BY, Bijli KM, Ma J, Cheng J, Murphy TC, Michael Hart C, Sutliff RL (2015) Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic Biol Med 87:36–47

    Article  CAS  PubMed  Google Scholar 

  • Akita M, Suzuki-Karasaki M, Fujiwara K, Nakagawa C, Soma M, Yoshida Y, Ochiai T, Tokuhashi Y, Suzuki-Karasaki Y (2014) Mitochondrial division inhibitor-1 induces mitochondrial hyperfusion and sensitizes human cancer cells to TRAIL-induced apoptosis. Int J Oncol 45(5):1901–1912

    CAS  PubMed  Google Scholar 

  • Aravamudan B, Kiel A, Freeman M, Delmotte P, Thompson M, Vassallo R, Sieck GC, Pabelick CM, Prakash YS (2014) Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 306(9):L840–L854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer SL (2013) Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med 369(23):2236–2251

    Article  CAS  PubMed  Google Scholar 

  • Awad H, Nolette N, Hinton M, Dakshinamurti S (2014) AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol 49(9):885–897

    Article  PubMed  Google Scholar 

  • Badesch DB, Raskob GE, Elliott CG, Krichman AM, Farber HW, Frost AE, Barst RJ, Benza RL, Liou TG, Turner M, Giles S, Feldkircher K, Miller DP, McGoon MD (2010) Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry. Chest 137(2):376–387

    Article  PubMed  Google Scholar 

  • Blanquicett C, Kang BY, Ritzenthaler JD, Jones DP, Hart CM (2010) Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radic Biol Med 48(12):1618–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113(22):2630–2641

    Article  CAS  PubMed  Google Scholar 

  • Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, Carmeliet P (2003) Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 111(10):1519–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95(20):11715–11720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favier FB, Britto FA, Freyssenet DG, Bigard XA, Benoit H (2015) HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology. Cell Mol Life Sci 72(24):4681–4696

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-da-Silva A, Valacca C, Rios E, Populo H, Soares P, Sobrinho-Simoes M, Scorrano L, Maximo V, Campello S (2015) Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS ONE 10(3):e0122308

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs B, Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Grimminger F, Seeger W, Gudermann T, Weissmann N (2010) Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol 174(3):282–291

    Article  CAS  PubMed  Google Scholar 

  • Gillespie MN, Al-Mehdi AB, McMurtry IF (2013) Mitochondria in hypoxic pulmonary vasoconstriction: potential importance of compartmentalized reactive oxygen species signaling. Am J Respir Crit Care Med 187(4):338–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Tang X, Tian H, Liu Y, Wang Z, Wu H, Wang J, Guo S, Zhu D (2008) Subacute hypoxia suppresses Kv3.4 channel expression and whole-cell K + currents through endogenous 15-hydroxyeicosatetraenoic acid in pulmonary arterial smooth muscle cells. Eur J Pharmacol 587(1–3):187–195

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, Tian H, Jiang C, Zhu D (2012) The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C. Hypertension 59(5):1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Johnson PC, Vandegriff K, Tsai AG, Intaglietta M (2005) Effect of acute hypoxia on microcirculatory and tissue oxygen levels in rat cremaster muscle. J Appl Physiol 98(4):1177–1184

    Article  PubMed  Google Scholar 

  • Kameshima S, Kazama K, Okada M, Yamawaki H (2015) Eukaryotic elongation factor 2 kinase mediates monocrotaline-induced pulmonary arterial hypertension via reactive oxygen species-dependent vascular remodeling. Am J Physiol Heart Circ Physiol 308(10):H1298–H1305

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Qiu Y, Mao M, Lv J, Zhang L, Li S, Li X, Zheng X (2014) Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation. Molecules 19(11):19036–19049

    Article  PubMed  Google Scholar 

  • Lu A, Zuo C, He Y, Chen G, Piao L, Zhang J, Xiao B, Shen Y, Tang J, Kong D, Alberti S, Chen D, Zuo S, Zhang Q, Yan S, Fei X, Yuan F, Zhou B, Duan S, Yu Y, Lazarus M, Su Y, Breyer RM, Funk CD (2015) EP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-beta1 signaling. J Clin Invest 125(3):1228–1242

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyle AN, Griendling KK (2006) Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology (Bethesda) 21:269–280

    Article  CAS  Google Scholar 

  • Ma J, Liang S, Wang Z, Zhang L, Jiang J, Zheng J, Yu L, Zheng X, Wang R, Zhu D (2010) ROCK pathway participates in the processes that 15-hydroxyeicosatetraenoic acid (15-HETE) mediated the pulmonary vascular remodeling induced by hypoxia in rat. J Cell Physiol 222(1):82–94

    Article  CAS  PubMed  Google Scholar 

  • Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, Thenappan T, Piao L, Zhang HJ, Pogoriler J, Chen Y, Morrow E, Weir EK, Rehman J, Archer SL (2012) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110(11):1484–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101(3):258–267

    Article  CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, Sattler C, Fadel E, Seferian A, Montani D, Dorfmuller P, Humbert M, Guignabert C (2014) Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation 129(15):1586–1597

    Article  CAS  PubMed  Google Scholar 

  • Ryan JJ, Marsboom G, Fang YH, Toth PT, Morrow E, Luo N, Piao L, Hong Z, Ericson K, Zhang HJ, Han M, Haney CR, Chen CT, Sharp WW, Archer SL (2013) PGC1alpha-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med 187(8):865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahara M, Sata M, Morita T, Nakamura K, Hirata Y, Nagai R (2007) Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation 115(4):509–517

    Article  PubMed  Google Scholar 

  • Schwarzer M, Osterholt M, Lunkenbein A, Schrepper A, Amorim P, Doenst T (2014) Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol 592(Pt 17):3767–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen T, Wang N, Yu X, Shi J, Li Q, Zhang C, Fu L, Wang S, Xing Y, Zheng X, Yu L, Zhu D (2015) The critical role of dynamin-related protein 1 in hypoxia-induced pulmonary vascular angiogenesis. J Cell Biochem 116(9):1993–2007

    Article  CAS  PubMed  Google Scholar 

  • Shimoda LA, Semenza GL (2011) HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med 183(2):152–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda LA, Undem C (2010) Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respir Physiol Neurobiol 174(3):221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas KJ, Jacobson MR (2012) Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model. PLoS ONE 7(9):e45319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Tang X, Li Y, Leu C, Guo L, Zheng X, Zhu D (2008) 20-Hydroxyeicosatetraenoic acid inhibits the apoptotic responses in pulmonary artery smooth muscle cells. Eur J Pharmacol 588(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91(8):719–726

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT (2013) Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 187(4):424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu P, Wang Y, Wang M, Li H, Lin S, Mao C, Wang B, Song X, Lv C (2015a) Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission. J Cell Mol Med 19(9):2215–2231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li Y, Liu Y, Wang X, Chen M, Xing Y, Zhu D (2015b) STAT3-mediated MMP-2 expression is required for 15-HETE-induced vascular adventitial fibroblast migration. J Steroid Biochem Mol Biol 149:106–117

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Medhora M, Campbell WB, Spitzbarth N, Baker JE, Jacobs ER (2003) Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circ Res 92(9):992–1000

    Article  CAS  PubMed  Google Scholar 

  • Zungu M, Schisler J, Willis MS (2011) All the little pieces. -Regulation of mitochondrial fusion and fission by ubiquitin and small ubiquitin-like modifer and their potential relevance in the heart. Circ J 75(11):2513–2521

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by these fundings: Contract Grant Sponsor: the Graduate Innovation Foundation of Heilongjiang Province; Contract Grant Number: YJSCX 2014-15HYD; Contract Grant Sponsor: Natural Science Foundation of China; Contract Grant Numbers: 31471095, 81270113, 81400353; Contract Grant Sponsor: Key Research Plan of National Natural Science Foundation of China; Contract Grant Number: 91339107; Contract Grant Sponsor: Natural Science Foundation of Heilongjiang Province; Contract Grant Numbers: SCX-2012-9, QC2014C096; Contract Grant Sponsor: Wu Liande Youth Science Foundation; Contract Grant Number: WLD-QN1410; Contract Grant Sponsor: Postdoctoral Foundation of Heilongjiang Province, China; Contract Grant Numbers: LBH-Z14133, 2015m571438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daling Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, C., Zhang, C. et al. Reactive oxygen species effect PASMCs apoptosis via regulation of dynamin-related protein 1 in hypoxic pulmonary hypertension. Histochem Cell Biol 146, 71–84 (2016). https://doi.org/10.1007/s00418-016-1424-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1424-9

Keywords

Navigation