Skip to main content
Log in

Hyaluronidase 2 (HYAL2) is expressed in endothelial cells, as well as some specialized epithelial cells, and is required for normal hyaluronan catabolism

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Hyaluronidase 2 (HYAL2) is a membrane-anchored protein that is proposed to initiate the degradation of hyaluronan (HA) in the extracellular matrix. The distribution of HYAL2 in tissues, and of HA in tissues lacking HYAL2, is largely unexplored despite the importance of HA metabolism in several disease processes. Herein, we use immunoblot and histochemical analyses to detect HYAL2 and HA in mouse tissues, as well as agarose gel electrophoresis to examine the size of HA. HYAL2 was detected in all tissues that were examined, including the brain. It was localized to the surface and cytoplasm of endothelial cells, as well as specialized epithelial cells in several tissues, including the skin. Accumulated HA, often of higher molecular mass than that in control tissues, was detected in tissues from Hyal2 / mice. The accumulating HA was located near to where HYAL2 is normally found, although in some tissues, it was distant from the site of HYAL2 localization. Overall, HYAL2 was highest in tissues that remove HA from the circulation (liver, lymph node and spleen), but the levels of HA accumulation in Hyal2 / mice were highest in tissues that catabolize locally synthesized HA. Our results support HYAL2’s role as an extracellular enzyme that initiates HA breakdown in somatic tissues. However, our findings also suggest that HYAL2 contributes to HA degradation through other routes, perhaps as a soluble or secreted form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albeiroti S, Ayasoufi K, Hill DR, Shen B, de la Motte CA (2015) Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation. Blood 125:1460–1469

    Article  PubMed  CAS  Google Scholar 

  • Andre B, Duterme C, Van Moer K, Mertens-Strijthagen J, Jadot M, Flamion B (2011) Hyal2 is a glycosylphosphatidylinositol-anchored, lipid raft-associated hyaluronidase. Biochem Biophys Res Commun 411:175–179

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E (2004) CD44 interaction with Na+–H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 279:26991–27007

    Article  PubMed  CAS  Google Scholar 

  • Butikofer P, Malherbe T, Boschung M, Roditi I (2001) GPI-anchored proteins: now you see ‘em, now you don’t. FASEB J 15:545–548

    Article  PubMed  CAS  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Investig 106:349–360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cherr GN, Meyers SA, Yudin AI, VandeVoort CA, Myles DG, Primakoff P, Overstreet JW (1996) The PH-20 protein in cynomolgus macaque spermatozoa: identification of two different forms exhibiting hyaluronidase activity. Dev Biol 175:142–153

    Article  PubMed  CAS  Google Scholar 

  • Chow G, Knudson CB, Knudson W (2006) Expression and cellular localization of human hyaluronidase-2 in articular chondrocytes and cultured cell lines. Osteoarthr Cartil 14:849–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chowdhury B, Hemming R, Hombach-Klonisch S, Flamion B, Triggs-Raine B (2013) Murine hyaluronidase 2 deficiency results in extracellular hyaluronan accumulation and severe cardiopulmonary dysfunction. J Biol Chem 288:520–528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Copp AJ, Bernfield M (1988) Accumulation of basement membrane-associated hyaluronate is reduced in the posterior neuropore region of mutant (curly tail) mouse embryos developing spinal neural tube defects. Dev Biol 130:583–590

    Article  PubMed  CAS  Google Scholar 

  • Csoka AB, Scherer SW, Stern R (1999) Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 60:356–361

    Article  PubMed  CAS  Google Scholar 

  • Csoka AB, Frost GI, Stern R (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 20:499–508

    Article  PubMed  CAS  Google Scholar 

  • Culty M, Nguyen HA, Underhill CB (1992) The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol 116:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • de la Motte C, Nigro J, Vasanji A, Rho H, Kessler S, Bandyopadhyay S, Danese S, Fiocchi C, Stern R (2009) Platelet-derived hyaluronidase 2 cleaves hyaluronan into fragments that trigger monocyte-mediated production of proinflammatory cytokines. Am J Pathol 174:2254–2264

    Article  PubMed  PubMed Central  Google Scholar 

  • Duterme C, Mertens-Strijthagen J, Tammi M, Flamion B (2009) Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44–ERM interactions. J Biol Chem 284:33495–33508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Falkowski M, Schledzewski K, Hansen B, Goerdt S (2003) Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochem Cell Biol 120:361–369

    Article  PubMed  CAS  Google Scholar 

  • Fraser JR, Laurent TC (1989) Turnover and metabolism of hyaluronan. In: Ciba Foundation Symposium, vol 143, pp 41–53 (discussion 53–59, 281–285)

  • Fraser JR, Appelgren LE, Laurent TC (1983) Tissue uptake of circulating hyaluronic acid. A whole body autoradiographic study. Cell Tissue Res 233:285–293

    Article  PubMed  CAS  Google Scholar 

  • Fraser JR, Kimpton WG, Laurent TC, Cahill RN, Vakakis N (1988) Uptake and degradation of hyaluronan in lymphatic tissue. Biochem J 256:153–158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33

    Article  PubMed  CAS  Google Scholar 

  • Frost GI, Csoka AB, Wong T, Stern R (1997) Purification, cloning, and expression of human plasma hyaluronidase. Biochem Biophys Res Commun 236:10–15

    Article  PubMed  CAS  Google Scholar 

  • Galloway JL, Jones SJ, Mossey PA, Ellis IR (2013) The control and importance of hyaluronan synthase expression in palatogenesis. Front Physiol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerdin B, Hallgren R (1991) Localisation of hyaluronan in the human intestinal wall. Gut 32:760–762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gushulak L, Hemming R, Martin D, Seyrantepe V, Pshezhetsky A, Triggs-Raine B (2012) Hyaluronidase 1 and beta-hexosaminidase have redundant functions in hyaluronan and chondroitin sulfate degradation. J Biol Chem 287:16689–16697

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haddon CM, Lewis JH (1991) Hyaluronan as a propellant for epithelial movement: the development of semicircular canals in the inner ear of Xenopus. Development 112:541–550

    PubMed  CAS  Google Scholar 

  • Harada H, Takahashi M (2007) CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem 282:5597–5607

    Article  PubMed  CAS  Google Scholar 

  • Hemming R, Martin DC, Slominski E, Nagy JI, Halayko AJ, Pind S, Triggs-Raine B (2008) Mouse Hyal3 encodes a 45- to 56-kDa glycoprotein whose overexpression increases hyaluronidase 1 activity in cultured cells. Glycobiology 18:280–289

    Article  PubMed  CAS  Google Scholar 

  • Hida D, Danielson BT, Knudson CB, Knudson W (2015) CD44 knock-down in bovine and human chondrocytes results in release of bound HYAL2. Matrix Biol. doi:10.1016/j.matbio.2015.04.002

    PubMed  Google Scholar 

  • Hirose Y, Saijou E, Sugano Y, Takeshita F, Nishimura S, Nonaka H, Chen YR, Sekine K, Kido T, Nakamura T, Kato S, Kanke T, Nakamura K, Nagai R, Ochiya T, Miyajima A (2012) Inhibition of Stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. Proc Natl Acad Sci USA 109:4263–4268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Itano N, Sawai T, Miyaishi O, Kimata K (1999) Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res 59:2499–2504

    PubMed  CAS  Google Scholar 

  • Jadin L, Wu X, Ding H, Frost GI, Onclinx C, Triggs-Raine B, Flamion B (2008) Skeletal and hematological anomalies in HYAL2-deficient mice: a second type of mucopolysaccharidosis IX? FASEB J 22:4316–4326

    Article  PubMed  CAS  Google Scholar 

  • Jadin L, Bookbinder LH, Frost GI (2012) A comprehensive model of hyaluronan turnover in the mouse. Matrix Biol 31:81–89

    Article  PubMed  CAS  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404

    PubMed  CAS  Google Scholar 

  • Laurent TC, Laurent UB, Fraser JR (1996a) Serum hyaluronan as a disease marker. Ann Med 28:241–253

    Article  PubMed  CAS  Google Scholar 

  • Laurent TC, Laurent UB, Fraser JR (1996b) The structure and function of hyaluronan: an overview. Immunol Cell Biol 74:A1–A7

    Article  PubMed  CAS  Google Scholar 

  • Lepperdinger G, Strobl B, Kreil G (1998) HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J Biol Chem 273:22466–22470

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Toole BP, Dealy CN, Kosher RA (2007) Hyaluronan in limb morphogenesis. Dev Biol 305:411–420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Luong MX, Tam J, Lin Q, Hagendoorn J, Moore KJ, Padera TP, Seed B, Fukumura D, Kucherlapati R, Jain RK (2009) Lack of lymphatic vessel phenotype in LYVE-1/CD44 double knockout mice. J Cell Physiol 219:430–437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin DC, Atmuri V, Hemming RJ, Farley J, Mort JS, Byers S, Hombach-Klonisch S, Csoka AB, Stern R, Triggs-Raine BL (2008) A mouse model of human mucopolysaccharidosis IX exhibits osteoarthritis. Hum Mol Genet 17:1904–1915

    Article  PubMed  CAS  Google Scholar 

  • McCourt PA, Smedsrod BH, Melkko J, Johansson S (1999) Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors. Hepatology 30:1276–1286

    Article  PubMed  CAS  Google Scholar 

  • Monzon ME, Manzanares D, Schmid N, Casalino-Matsuda SM, Forteza RM (2008) Hyaluronidase expression and activity is regulated by pro-inflammatory cytokines in human airway epithelial cells. Am J Respir Cell Mol Biol 39:289–295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morales TI, Hascall VC (1989) Factors involved in the regulation of proteoglycan metabolism in articular cartilage. Arthritis Rheum 32:1197–1201

    Article  PubMed  CAS  Google Scholar 

  • Pohl M, Sakurai H, Stuart RO, Nigam SK (2000) Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol 224:312–325

    Article  PubMed  CAS  Google Scholar 

  • Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276:19420–19430

    Article  PubMed  CAS  Google Scholar 

  • Rai SK, Duh FM, Vigdorovich V, Danilkovitch-Miagkova A, Lerman MI, Miller AD (2001) Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc Natl Acad Sci USA 98:4443–4448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodgers LS, Lalani S, Hardy KM, Xiang X, Broka D, Antin PB, Camenisch TD (2006) Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ Res 99:583–589

    Article  PubMed  CAS  Google Scholar 

  • Schiller S, Dorfman A (1957) The metabolism of mucopolysaccharides in animals: the effect of cortisone and hydrocortisone on rat skin. Endocrinology 60:376–381

    Article  PubMed  CAS  Google Scholar 

  • Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499:346–349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Toole BP (2001) Hyaluronan in morphogenesis. Semin Cell Dev Biol 12:79–87

    Article  PubMed  CAS  Google Scholar 

  • Triggs-Raine B, Salo TJ, Zhang H, Wicklow BA, Natowicz MR (1999) Mutations in HYAL1, a member of a tandemly distributed multigene family encoding disparate hyaluronidase activities, cause a newly described lysosomal disorder, mucopolysaccharidosis IX. Proc Natl Acad Sci USA 96:6296–6300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weigel JA, Raymond RC, McGary C, Singh A, Weigel PH (2003) A blocking antibody to the hyaluronan receptor for endocytosis (HARE) inhibits hyaluronan clearance by perfused liver. J Biol Chem 278:9808–9812

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Nagaoka A, Kusaka-Kikushima A, Tobiishi M, Kawabata K, Sayo T, Sakai S, Sugiyama Y, Enomoto H, Okada Y, Inoue S (2013) KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci USA 110:5612–5617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (MP-89873), the Canadian Cancer Society Research Institute (#702828) and the Mizutani Foundation for Glycoscience to BTR. BC was supported by a joint studentship from the Manitoba Health Research Council and the Manitoba Institute of Child Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Triggs-Raine.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, B., Hemming, R., Faiyaz, S. et al. Hyaluronidase 2 (HYAL2) is expressed in endothelial cells, as well as some specialized epithelial cells, and is required for normal hyaluronan catabolism. Histochem Cell Biol 145, 53–66 (2016). https://doi.org/10.1007/s00418-015-1373-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1373-8

Keywords

Navigation