Skip to main content

Advertisement

Log in

Immunohistochemical analysis of transporters related to clearance of amyloid-β peptides through blood–cerebrospinal fluid barrier in human brain

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

A large number of previous reports have focused on the transport of amyloid-β peptides through cerebral endothelial cells via the blood–brain barrier, while fewer reports have mentioned the transport through the choroid plexus epithelium via the blood–cerebrospinal fluid barrier. Concrete roles of these two pathways remain to be clarified. In this study, we immunohistochemically examined the expression of transporters/receptors that are supposed to be related to the clearance of amyloid-β peptides in the choroid plexus epithelium, the ventricular ependymal cells and the brain microvessels, using seven autopsied human brains. In the choroid plexus epithelium, immunoreactivity for low-density lipoprotein receptor (LDLR), LDLR-related protein 1 (LRP1), LRP2, formylpeptide receptor-like 1 (FPRL1), ATP-binding cassette (ABC) transporter-A1 (ABCA1), ABCC1 and ABCG4 was seen in 7 of 7 brains, while that for ABCB1, ABCG2, RAGE and CD36 was seen in 0–2 brains. In the ventricular ependymal cells, immunoreactivity for CD36, LDLR, LRP1, LRP2, FPRL1, ABCA1, ABCC1 and ABCG4 was seen in 6–7 brains, while that for ABCB1, ABCG2 and RAGE was seen in 0–1 brain. Immunoreactivity for insulin-degrading enzyme (IDE) was seen in three and four brains in the choroid plexus epithelium and the ventricular ependymal cells, respectively. In addition, immunoreactivity for LDLR, ABCB1 and ABCG2 was seen in over 40 % of the microvessels (all seven brains), and that for FPRL1, ABCA1, ABCC1 and RAGE was seen in over 5 % of the microvessels (4–6 brains), while that for CD36, IDE, LRP1, LRP2 and ABCG4 was seen in less than 5 % of the microvessels (0–2 brains). These findings may suggest that these multiple transporters/receptors and IDE expressed on the choroid plexus epithelium, ventricular ependymal cells and brain microvessels complementarily or cooperatively contribute to the clearance of amyloid-β peptides from the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulkarim Y, Hameed Z (2006) Is the LDL receptor involved in cortical amyloid protein clearance? Neurochem Res 31:839–847

    Article  CAS  PubMed  Google Scholar 

  • Abuznait AH, Kaddoumi A (2012) Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem Neurosci 3:820–831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akanuma S, Ohtsuki S, Doi Y, Tachikawa M, Ito S, Hori S, Asashima T, Hashimoto T, Yamada K, Ueda K, Iwatsubo T, Terasaki T (2008) ATP-binding cassette transporter A1 (ABCA1) deficiency does not attenuate the brain-to-blood efflux transport of human amyloid-beta peptide (1-40) at the blood-brain barrier. Neurochem Int 52:956–961

    Article  CAS  PubMed  Google Scholar 

  • Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 287:13959–13971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behl M, Zhang Y, Zheng W (2009) Involvement of insulin-degrading enzyme in the clearance of beta-amyloid at the blood-CSF barrier: consequences of lead exposure. Cerebrospinal Fluid Res 6:11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Behl M, Zhang Y, Shi Y, Cheng J, Du Y, Zheng W (2010) Lead-induced accumulation of β-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 31:524–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, Lusis AJ, Collins A, Hseuh WA, Collins JL, Tangirala RK, Tontonoz P (2007) Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 117:2337–2346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandstätter A, Lamina C, Kiechl S, Hunt SC, Coassin S, Paulweber B, Kramer F, Summerer M, Willeit J, Kedenko L, Adams TD, Kronenberg F (2010) Sex and age interaction with genetic association of atherogenic uric acid concentrations. Atherosclerosis 210:474–478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A, Migheli A, Stern D (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 143:1699–1712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Buerger K, Frisoni G, Uspenskaya O, Ewers M, Zetterberg H, Geroldi C, Binetti G, Johannsen P, Rossini PM, Wahlund LO, Vellas B, Blennow K, Hampel H (2009) Validation of Alzheimer’s disease CSF and plasma biological markers: the multicentre reliability study of the pilot European Alzheimer’s Disease Neuroimaging Initiative (E-ADNI). Exp Gerontol 44:579–585

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Fukuchi K, Wan H, Kim H, Li L (2006) Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 27:1632–1643

    Article  CAS  PubMed  Google Scholar 

  • Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO (2013) Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 39:593–611

    Article  CAS  PubMed  Google Scholar 

  • Caravaggio JW, Hasu M, MacLaren R, Thabet M, Raizman JE, Veinot JP, Marcel YL, Milne RW, Whitman SC (2013) Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice. Cardiovasc Pathol 22:458–464

    Article  CAS  PubMed  Google Scholar 

  • Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I (2005) Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893

    Article  CAS  PubMed  Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3:89ra57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, Paoletti AC, Kasper TR, DeMattos RB, Zlokovic BV, Holtzman DM (2012) Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc Natl Acad Sci USA 109:15502–15507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan CY, Chan YC, Cheuk BL, Cheng SW (2013) A pilot study on low-density lipoprotein receptor-related protein-1 in Chinese patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 46:549–556

    Article  CAS  PubMed  Google Scholar 

  • Chun JT, Wang L, Pasinetti GM, Finch CE, Zlokovic BV (1999) Glycoprotein 330/megalin (LRP-2) has low prevalence as mRNA and protein in brain microvessels and choroid plexus. Exp Neurol 157:194–201

    Article  CAS  PubMed  Google Scholar 

  • Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El-Khoury JB (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160:101–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crossgrove JS, Li GJ, Zheng W (2005) The choroid plexus removes beta-amyloid from brain cerebrospinal fluid. Exp Biol Med (Maywood) 230:771–776

    CAS  Google Scholar 

  • Crossgrove JS, Smith EL, Zheng W (2007) Macromolecules involved in production and metabolism of beta-amyloid at the brain barriers. Brain Res 1138:187–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui Y, Le Y, Yazawa H, Gong W, Wang JM (2002) Potential role of the formyl peptide receptor-like 1 (FPRL1) in inflammatory aspects of Alzheimer’s disease. J Leukoc Biol 72:628–635

    CAS  PubMed  Google Scholar 

  • Culican SM, Baumrind NL, Yamamoto M, Pearlman AL (1990) Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci 10:684–692

    CAS  PubMed  Google Scholar 

  • Dahl D, Rueger DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57,000 molecular weight protein of fibroblasts filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol 24:191–196

    CAS  PubMed  Google Scholar 

  • Daood M, Tsai C, Ahdab-Barmada M, Watchko JF (2008) ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 39:211–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Deane R, Wu Z, Zlokovic BV (2004) RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier. Stroke 35:2628–2631

    Article  CAS  PubMed  Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest 118:4002–4013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, Harmony JA, Aronow BJ, Bales KR, Paul SM, Holtzman DM (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193–202

    Article  CAS  PubMed  Google Scholar 

  • Dietrich MO, Spuch C, Antequera D, Rodal I, de Yébenes JG, Molina JA, Bermejo F, Carro E (2008) Megalin mediates the transport of leptin across the blood-CSF barrier. Neurobiol Aging 29:902–912

    Article  CAS  PubMed  Google Scholar 

  • Do TM, Noel-Hudson MS, Ribes S, Besengez C, Smirnova M, Cisternino S, Buyse M, Calon F, Chimini G, Chacun H, Schermann JM, Farinotti R, Bourasset F (2012) ABCG2- and ABCG4-mediated efflux of amyloid-β peptide 1-40 at the mouse blood-brain barrier. J Alzheimers Dis 30:155–166

    CAS  PubMed  Google Scholar 

  • ElAli A, Hermann DM (2012) Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells. Brain Pathol 22:175–187

    Article  CAS  PubMed  Google Scholar 

  • Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frassoni C, Amadeo A, Ortino B, Jaranowska A, Spreafico R (2000) Organization of radial and non-radial glia in the developing rat thalamus. J Comp Neurol 428:527–542

    Article  CAS  PubMed  Google Scholar 

  • Fryer JD, DeMattos RB, McCormick LM, O’Dell MA, Spinner ML, Bales KR, Paul SM, Sullivan PM, Parsadanian M, Bu G, Holtzman DM (2005) The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem 280:25754–25759

    Article  CAS  PubMed  Google Scholar 

  • Fujiyoshi M, Ohtsuki S, Hori S, Tachikawa M, Terasaki T (2007) 24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical- and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 expression. J Neurochem 100:968–978

    Article  CAS  PubMed  Google Scholar 

  • Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T (2011) Amyloid-β peptide(1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 118:407–415

    Article  CAS  PubMed  Google Scholar 

  • Gajera CR, Emich H, Lioubinski O, Christ A, Beckervordersandforth-Bonk R, Yoshikawa K, Bachmann S, Christensen EI, Götz M, Kempermann G, Peterson AS, Willnow TE, Hammes A (2010) LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci 123:1922–1930

    Article  CAS  PubMed  Google Scholar 

  • Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, Ghersi-Egea JF (2008) Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol 510:497–507

    Article  CAS  PubMed  Google Scholar 

  • Ghersi-Egea JF, Strazielle N, Murat A, Jouvet A, Buénerd A, Belin MF (2006) Brain protection at the blood-cerebrospinal fluid interface involves a glutathione-dependent metabolic barrier mechanism. J Cereb Blood Flow Metab 26:1165–1175

    CAS  PubMed  Google Scholar 

  • González-Marrero I, Giménez-Llort L, Johanson CE, Carmona-Calero EM, Castañeyra-Ruiz L, Brito-Armas JM, Castañeyra-Perdomo A, Castro-Fuentes R (2015) Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease. Front Cell Neurosci 9:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Gosselet F, Saint-Pol J, Candela P, Fenart L (2013) Amyloid-β peptides, Alzheimer’s disease and the blood-brain barrier. Curr Alzheimer Res 10:1015–1033

    Article  CAS  PubMed  Google Scholar 

  • Greenwalt DE, Scheck SH, Rhinehart-Jones T (1995) Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin Invest 96:1382–1388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu H, Wei X, Monnot AD, Fontanilla CV, Behl M, Farlow MR, Zheng W, Du Y (2011) Lead exposure increases levels of β-amyloid in the brain and CSF and inhibits LRP1 expression in APP transgenic mice. Neurosci Lett 490:16–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gubert F, Zaverucha-do-Valle C, Pimentel-Coelho PM, Mendez-Otero R, Santiago MF (2009) Radial glia-like cells persist in the adult rat brain. Brain Res 1258:43–52

    Article  CAS  PubMed  Google Scholar 

  • Hammad SM, Ranganathan S, Loukinova E, Twal WO, Argraves WS (1997) Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-peptide. J Biol Chem 272:18644–18649

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral β-amyloid angiopathy: murine and cellular models. Brain Pathol 16:40–54

    Article  CAS  PubMed  Google Scholar 

  • Hoffman WH, Artlett CM, Zhang W, Kreipke CW, Passmore GG, Rafols JA, Sima AA (2008) Receptor for advanced glycation end products and neuronal deficit in the fatal brain edema of diabetic ketoacidosis. Brain Res 1238:154–162

    Article  CAS  PubMed  Google Scholar 

  • Iribarren P, Zhou Y, Hu J, Le Y, Wang JM (2005) Role of formyl peptide receptor-like 1 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease. Immunol Res 31:165–176

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Ueno T, Ohtsuki S, Terasaki T (2010) Lack of brain-to-blood efflux transport activity of low-density lipoprotein receptor-related protein-1 (LRP-1) for amyloid-β peptide(1-40) in mouse: involvement of an LRP-1-independent pathway. J Neurochem 113:1356–1363

    CAS  PubMed  Google Scholar 

  • Johanson C, Flaherty S, Messier A, Duncan J III, Silverberg G (2006) Expression of the beta-amyloid transporter, LRP-1, in aging choroid plexus: implications for the CSF-brain system in NPH and Alzheimer’s disease. Cerebrospinal Fluid Res 3(Suppl 1):S29

    Article  PubMed Central  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1996) Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther 277:1550–1559

    CAS  PubMed  Google Scholar 

  • Kanekiyo T, Liu CC, Shinohara M, Li J, Bu G (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer’s amyloid-β. J Neurosci 32:16458–16465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanekiyo T, Cirrito JR, Liu CC, Shinohara M, Li J, Schuler DR, Shinohara M, Holtzman DM, Bu G (2013) Neuronal clearance of amyloid-β by endocytic receptor LRP1. J Neurosci 33:19276–19283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 56:47–53

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, Mason SM, Paul SM, Holtzman DM (2009) Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron 64:632–644

    Article  PubMed Central  PubMed  Google Scholar 

  • Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat Med 10:719–726

    Article  CAS  PubMed  Google Scholar 

  • Kounnas MZ, Haudenschild CC, Strickland DK, Argraves WS (1994) Immunological localization of glycoprotein 330, low density lipoprotein receptor related protein and 39 kDa receptor associated protein in embryonic mouse tissues. In Vivo 8:343–351

    CAS  PubMed  Google Scholar 

  • Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, Schumacher T, Brüning T, Plath AS, Alfen F, Schmidt A, Winter F, Rateitschak K, Wree A, Gsponer J, Walker LC, Pahnke J (2011) Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest 121:3924–3931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, Reiner PB (2001) Beta-amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM (2001) Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 21:RC123

  • Lee CY, Landreth GE (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm 117:949–960

    Article  CAS  PubMed  Google Scholar 

  • Liu CB, Wang R, Dong MW, Gao XR, Yu F (2014) Amyloid-beta transporter expression at the choroid plexus in normal aging: the possibility of reduced resistance to oxidative stress insults. Sheng Li Xue Bao 66:158–168

    CAS  PubMed  Google Scholar 

  • Maślińska D, Laure-Kamionowska M, Taraszewska A, Deręgowski K, Maśliński S (2011) Immunodistribution of amyloid beta protein (Aβ) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients. Folia Neuropathol 49:295–300

    PubMed  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330:1774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40:500–503

    Article  CAS  PubMed  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mueggler T, Meyer-Luehmann M, Rausch M, Staufenbiel M, Jucker M, Rudin M (2004) Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. Eur J Neurosci 20:811–817

    Article  PubMed  Google Scholar 

  • Narang VS, Fraga C, Kumar N, Shen J, Throm S, Stewart CF, Waters CM (2008) Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood-brain barrier. Am J Physiol Cell Physiol 295:C440–C450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishino J, Suzuki H, Sugiyama D, Kitazawa T, Ito K, Hanano M, Sugiyama Y (1999) Transepithelial transport of organic anions across the choroid plexus: possible involvement of organic anion transporter and multidrug resistance-associated protein. J Pharmacol Exp Ther 290:289–294

    CAS  PubMed  Google Scholar 

  • Ohashi R, Mu H, Yao Q, Chen C (2004) Cellular and molecular mechanisms of atherosclerosis with mouse models. Trends Cardiovasc Med 14:187–190

    Article  CAS  PubMed  Google Scholar 

  • Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD (2011) Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 8:21–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rao VV, Dahlheimer JL, Bardgett ME, Snyder AZ, Finch RA, Sartorelli AC, Piwnica-Worms D (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA 96:3900–3905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruzali WA, Kehoe PG, Love S (2012) LRP1 expression in cerebral cortex, choroid plexus and meningeal blood vessels: relationship to cerebral amyloid angiopathy and APOE status. Neurosci Lett 525:123–128

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AM, Yan SD, Wautier JL, Stern D (1999) Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84:489–497

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Yamada S, Kumar M, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511

    Article  PubMed  Google Scholar 

  • Steneberg P, Sykaras AG, Backlund F, Straseviciene J, Söderström I, Edlund H (2015) Hyperinsulinemia enhances hepatic expression of the fatty acid transporter Cd36 and provokes hepatosteatosis and hepatic insulin resistance. J Biol Chem 290:19034–19043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strickland DK, Au DT, Cunfer P, Muratoglu SC (2014) Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 34:487–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugiyama Y, Kusuhara H, Suzuki H (1999) Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers: importance in the drug delivery to the brain. J Control Release 62:179–186

    Article  CAS  PubMed  Google Scholar 

  • Szentistványi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844

    PubMed  Google Scholar 

  • Tachikawa M, Watanabe M, Hori S, Fukaya M, Ohtsuki S, Asashima T, Terasaki T (2005) Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J Neurochem 95:294–304

    Article  CAS  PubMed  Google Scholar 

  • Tai LM, Loughlin AJ, Male DK, Romero IA (2009) P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. J Cereb Blood Flow Metab 29:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Akiguchi I, Hosokawa M, Shinnou M, Sakamoto H, Takemura M, Higuchi K (1997) Age-related changes in the brain transfer of blood-borne horseradish peroxidase in the hippocampus of senescence-accelerated mouse. Acta Neuropathol 93:233–240

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Akiguchi I, Hosokawa M, Kotani H, Kanenishi K, Sakamoto H (2000) Blood-brain barrier permeability in the periventricular areas of the normal mouse brain. Acta Neuropathol 99:385–392

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Chiba Y, Matsumoto K, Nakagawa T, Miyanaka H (2014) Clearance of beta-amyloid in the brain. Curr Med Chem 21:4085–4090

    Article  CAS  PubMed  Google Scholar 

  • Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993

    Article  CAS  PubMed  Google Scholar 

  • Warren KE, Patel MC, McCully CM, Montuenga LM, Balis FM (2000) Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates. Cancer Chemother Pharmacol 45:207–212

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-β peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14

    Article  CAS  PubMed  Google Scholar 

  • Westerterp M, Bochem AE, Yvan-Charvet L, Murphy AJ, Wang N, Tall AR (2014) ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ Res 114:157–170

    Article  CAS  PubMed  Google Scholar 

  • Wijnholds J, deLange EC, Scheffer GL, van den Berg DJ, Mol CA, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD, Borst P (2000) Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest 105:279–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE (2013) Evidence for impaired amyloid β clearance in Alzheimer’s disease. Alzheimers Res Ther 5:33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilensky RL, Hamamdzic D (2007) The molecular basis of vulnerable plaque: potential therapeutic role for immunomodulation. Curr Opin Cardiol 22:545–551

    Article  PubMed  Google Scholar 

  • Wilhelmus MM, Otte-Höller I, van Triel JJ, Veerhuis R, Maat-Schieman ML, Bu G, de Waal RM, Verbeek MM (2007) Lipoprotein receptor-related protein-1 mediates amyloid-β-mediated cell death of cerebrovascular cells. Am J Pathol 171:1989–1999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, Pei K, Walker D, Lue LF, Stanimirovic D, Zhang W (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci 29:5463–5475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012) PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32:17321–17331

    Article  CAS  PubMed  Google Scholar 

  • Yazawa H, Yu ZX, Takeda K, Le Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM (2001) Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 15:2454–2462

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Bachinsky DR, Stamenkovic I, Strickland DK, Brown D, Andres G, McCluskey RT (1994) Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpha 2MR, and the receptor-associated protein (RAP). J Histochem Cytochem 42:531–542

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2004) Clearing amyloid through the blood-brain barrier. J Neurochem 89:807–811

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28:202–208

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229–4234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-aid for Scientific Research (C) 26430055 (MU) for the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors thank Ms. M. Kawauchi and Ms. K. Yasutomi for technical and editorial assistance, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ueno.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, K., Chiba, Y., Fujihara, R. et al. Immunohistochemical analysis of transporters related to clearance of amyloid-β peptides through blood–cerebrospinal fluid barrier in human brain. Histochem Cell Biol 144, 597–611 (2015). https://doi.org/10.1007/s00418-015-1366-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1366-7

Keywords

Navigation