Skip to main content

Advertisement

Log in

A novel cell-stiffness-fingerprinting analysis by scanning atomic force microscopy: comparison of fibroblasts and diverse cancer cell lines

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Differing stimuli affect cell stiffness while cancer metastasis is associated with reduced cell stiffness. Cell stiffness determined by atomic force microscopy has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. Ninety μm square fields were recorded from ten separate sites of cultured human dermal fibroblasts (HDF) and three sites each for melanoma (MM39, WM175, and MeIRMu), osteosarcoma (SAOS-2 and U2OS), and ovarian carcinoma (COLO316 and PEO4) cell lines, each site providing 1024 measurements as 32 × 32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analysed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p < 0.0001) and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high-height levels. We suggest that our stiffness-fingerprint analytical method provides a more nuanced description than previously reported and will facilitate study of the stiffness response to cell stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhremitchev BB, Walker GC (1999) Finite sample thickness effects on elasticity determination using atomic force microscopy. Langmuir 15:5630–5634

    Article  CAS  Google Scholar 

  • Baker EL, Lu J, Yu D, Bonnecaze RT, Zaman MH (2010) Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J 99:2048–2057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barthel E (2008) Adhesive elastic contacts—JKR and more. J Phys D Appl Phys 41:163001–163041

    Article  Google Scholar 

  • Costa KD, Yin FCP (1999) Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng Trans ASME 121:462–471

    Article  CAS  Google Scholar 

  • Coughlin MF, Bielenberg DR, Lenormand G, Marinkovic M, Waghorne CG, Zetter BR, Fredberg JJ (2013) Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin Exp Metastasis 30:237–250

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19:384003

    Article  PubMed  Google Scholar 

  • Cross SE, Jin YS, Lu QY, Rao J, Gimzewski JK (2011) Green tea extract selectively targets nanomechanics of live metastatic cancer cells. Nanotechnology 22:215101

    Article  PubMed Central  PubMed  Google Scholar 

  • Docheva D, Padula D, Schieker M, Clausen-Schaumann H (2010) Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells. Biochem Biophys Res Commun 402:361–366

    Article  CAS  PubMed  Google Scholar 

  • Efremov YM, Lomakina ME, Bagrov DV, Makhnovskiy PI, Alexandrova AY, Kirpichnikov MP, Shaitan KV (2014) Mechanical properties of fibroblasts depend on level of cancer transformation. Biochim Biophys Acta 1843:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann A, Staunton JR, Nandakumar V, Banyai N, Davies PC, Ros R (2011) AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys Biol 8:015007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin H, Pi J, Huang X, Huang F, Shao W, Li S, Chen Y, Cai J (2012) BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol 93:1715–1723

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Cho CH, Park EK, Jung MH, Yoon KS, Park HK (2012) AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells. PLoS One 7:e30066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krause M, Te Riet J, Wolf K (2013) Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Phys Biol 10:065002

    Article  PubMed  Google Scholar 

  • Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316

    Article  CAS  PubMed  Google Scholar 

  • Lekka M, Laidler P, Ignacak J, Labedz M, Lekki J, Struszczyk H, Stachura Z, Hrynkiewicz AZ (2001) The effect of chitosan on stiffness and glycolytic activity of human bladder cells. Biochim Biophys Acta 1540:127–136

    Article  CAS  PubMed  Google Scholar 

  • Loparic M, Wirz D, Daniels AU, Raiteri R, Vanlandingham MR, Guex G, Martin I, Aebi U, Stolz M (2010) Micro- and nano-mechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite. Biophys J 98:2731–2740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY, Schoenenberger CA (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7:757–765

    Article  CAS  PubMed  Google Scholar 

  • Ramos JR, Pabijan J, Garcia R, Lekka M (2014) The softening of human bladder cancer cells happens at an early stage of the malignancy process. Beilstein J Nanotechnol 5:447–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarna M, Zadlo A, Pilat A, Olchawa M, Gkogkolou P, Burda K, Bohm M, Sarna T (2013) Nanomechanical analysis of pigmented human melanoma cells. Pigment Cell Melanoma Res 26:727–730

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Santiskulvong C, Bentolila LA, Rao J, Dorigo O, Gimzewski JK (2012) Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine 8:757–766

    Article  CAS  PubMed  Google Scholar 

  • Suresh S (2007) Nanomedicine: elastic clues in cancer detection. Nat Nanotechnol 2:748–749

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71:5075–5080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi A, Watanabe T, Mondal A, Suzuki K, Kurusu-Kanno M, Li Z, Yamazaki T, Fujiki H, Suganuma M (2014) Mechanism-based inhibition of cancer metastasis with (-)-epigallocatechin gallate. Biochem Biophys Res Commun 443:1–6

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kuramochi H, Takahashi A, Imai K, Katsuta N, Nakayama T, Fujiki H, Suganuma M (2012) Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells. J Cancer Res Clin Oncol 138:859–866

    Article  CAS  PubMed  Google Scholar 

  • Ward KA, Li WI, Zimmer S, Davis T (1991) Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. Biorheology 28:301–313

    CAS  PubMed  Google Scholar 

  • Weder G, Hendriks-Balk MC, Smajda R, Rimoldi D, Liley M, Heinzelmann H, Meister A, Mariotti A (2014) Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties. Nanomedicine 10:141–148

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7:e46609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Memorial Sloan-Kettering Cancer Center and Australian Dental Research Fund for their support of related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Zoellner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoellner, H., Paknejad, N., Manova, K. et al. A novel cell-stiffness-fingerprinting analysis by scanning atomic force microscopy: comparison of fibroblasts and diverse cancer cell lines. Histochem Cell Biol 144, 533–542 (2015). https://doi.org/10.1007/s00418-015-1363-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1363-x

Keywords

Navigation