Skip to main content

Advertisement

Log in

An immunohistochemical analysis of SERT in the blood–brain barrier of the male rat brain

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

5-Hydroxytryptamine (5-HT) was originally discovered as a vasoconstrictor. 5-HT lowers blood pressure when administered peripherally to both normotensive and hypertensive male rats. Because the serotonin transporter (SERT) can function bidirectionally, we must consider whether 5-HT can be transported from the bloodstream to the central nervous system (CNS) in facilitating the fall in blood pressure. The blood–brain barrier (BBB) is a highly selective barrier that restricts movement of substances from the bloodstream to the CNS and vice versa, but the rat BBB has not been investigated in terms of SERT expression. This requires us to determine whether the BBB of the rat, the species in which we first observed a fall in blood pressure to infused 5-HT, expresses SERT. We hypothesized that SERT is present in the BBB of the male rat. To test this hypothesis, over 500 blood vessels were sampled from coronal slices of six male rat brains. Immunofluorescence of these coronal slices was used to determine whether SERT and RecA-1 (an endothelial cell marker) colocalized to the BBB. Blood vessels were considered to be capillaries if they were between 1.5 and 23 µm (intraluminal diameter). SERT was identified in the largest pial vessels of the BBB (mean ± SEM = 228.70 ± 18.71 µm, N = 9) and the smallest capillaries (mean ± SEM = 2.75 ± 0.12 µm, N = 369). SERT was not identified in the endothelium of blood vessels ranging from 20 to 135 µm (N = 45). The expression of SERT in the rat BBB means that 5-HT entry into the CNS must be considered a potential mechanism when investigating 5-HT-induced fall in blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT, Koldzic-Zivanovic N, Jeske NA, Koek W, Toney GM, Daws LC (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci USA 105(48):18976–18981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Blakely RD, De Felice LJ, Hartzell HC (1994) Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol 196:263–281

    CAS  PubMed  Google Scholar 

  • Brust P, Friedrich A, Krizbai IA, Bergmann R, Roux F, Ganapathy V, Johannsen B (2000) Functional expression of the serotonin transporter in immortalized rat brain microvessel endothelial cells. J Neurochem 74(3):1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Bulat M, Supek Z (1967) The penetration of 5-hydroxytryptamine through the blood brain barrier. J Neurochem 14:265–271

    Article  CAS  PubMed  Google Scholar 

  • Bulat M, Supek Z (1968) Passage of 5-hydroxytryptamine through the blood–brain barrier, its metabolism in the brain and elimination of 5-hydroxyindoleacetic acid from the brain tissue. J Neurochem 15(5):383–389

    Article  CAS  PubMed  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409(1):38–56

    Article  CAS  PubMed  Google Scholar 

  • Cipolla M (2009) The cerebral circulation. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) Serotonin (5-hydroxytryptamine) histamine and adenosine. In: Cooper JR, Bloom FE, Roth RH (eds) The Biochemical Basis of Neuropharmacology. Oxford University Press, New York, pp 271–320

    Google Scholar 

  • Davis RP, Pattison J, Thompson JM, Tiniakov R, Scrogin KE, Watts SW (2012) 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved. BMC Pharmacol 12:4. doi:10.1186/1471-2210-12-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daws LC (2009) Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 121(1):89–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz J, Ni W, Thompson J, King A, Fink GD, Watts SW (2008) 5-Hydroxytryptamine lowers blood pressure in normotensive and hypertensive rats. J Pharmacol Exp Ther 325:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Easton AS, Fraser PA (1998) Arachidonic acid increases cerebral microvascular permeability by free radicals in single pial microvessels of the anaesthetized rat. J Physiol 507(Pt 2):541–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engel K, Zhou M, Wang J (2004) Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 279(48):50042–50049

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Chen P, Li Y, Ordway GA, Zhu MY (2015) Effects of desipramine treatment on stress-induced up-regulation of norepinephrine transporter expression in rat brains. Psychopharmacology (Berl) 232(2):379–390

    Article  CAS  Google Scholar 

  • Green AR (2006) Neuropharmacology of 5-hydroxytryptamine. Br J Pharmacol 147(Suppl 1):S145–S152

    PubMed  Google Scholar 

  • Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7(5):335–346

    Article  CAS  PubMed  Google Scholar 

  • Hay M (2001) Circumventricular organs: gateways to the brain. Subcellular mechanisms of area postrema activation. Clin Exp Pharmacol Physiol 28:551–557

    Article  CAS  PubMed  Google Scholar 

  • Hilber B, Scholze P, Dorostkar MM, Sandtner W, Holy M, Boehm S, Singer EA, Sitte HH (2005) Serotonin-transporter mediated efflux: a pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology 49:8110819

    Article  Google Scholar 

  • Linder AE, Ni W, Szasz T, Burnett R, Diaz J, Geddes TJ, Kuhn M, Watts SW (2008) A serotonergic system in veins: serotonin transporter-independent uptake. J Pharmacol Exp Ther 325(3):714–722

    Article  CAS  PubMed  Google Scholar 

  • Linder AE, Davis RP, Burnett R, Watts SW (2011) Comparison of the function of the serotonin transporter in the vasculature of male and female rats. Clin Exp Pharmacol Physiol 38(5):314–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM (2008) Serotonin: a review. J Vet Pharmacol Ther 31(3):187–199

    Article  CAS  PubMed  Google Scholar 

  • Nakatani Y, Sato-Suzuki I, Tsujino N, Nakasato A, Seki Y, Fumoto M, Arita H (2008) Augmented brain 5-HT crosses the blood–brain barrier through the 5-HT transporter in rat. Eur J Neurosci 27(9):2466–2472

    Article  PubMed  Google Scholar 

  • Ni W, Watts SW (2006) 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT). Clin Exp Pharmacol Physiol 33(7):575–583

    Article  CAS  PubMed  Google Scholar 

  • Nyberg S, Jucaite A, Takano A, Kågedal M, Cselényi Z, Halldin C, Farde L (2013) Norepinephrine transporter occupancy in the human brain after oral administration of quetiapine XR. Int J Neuropsychopharmacol 16(10):2235–2244

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Roux F, Couraud PO (2005) Rat brain endothelial cell lines for the study of blood brain barrier permeability and transport functions. Cell Mol Neurobiol 25:41–58

    Article  PubMed  Google Scholar 

  • Sarker MH, Easton AS, Fraser PA (1998) Regulation of cerebral microvascular permeability by histamine in the anaesthetized rat. J Physiol 507(Pt 3):909–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sokolova IA, Manukhina EB, Blinkov SM, Koshelev VB, Pinelis VG, Rodionov IM (1985) Rarefication of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res 30(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Villringer A, Them A, Lindauer U, Einhäupl K, Dirnagl U (1994) Capillary perfusion of the rat brain cortex: an in vivo confocal microscopy study. Circ Res 75(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Wakayama K, Ohtsuki S, Takanaga H, Hosoya K, Terasaki T (2002) Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci Res 44(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • Watts SW, Morrison SF, Davis RP, Barman SM (2012) Serotonin and blood pressure regulation. Pharmacol Rev 64:359–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Westergaard E (1975) Enhanced vesicular transport of exogenous peroxidase across cerebral vessels, induced by serotonin. Acta Neuropathol 32(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Westergaard E (1978) The effect of serotonin on the blood brain barrier to proteins. J Neural Transm Suppl 14:9–15

    CAS  PubMed  Google Scholar 

  • Woneakin N, Patumraj S, Niimi H (2012) Capillary density changes in rat femur from youth to aging. Asian Biomed 6:285–289

    Google Scholar 

  • Yu PH (1984) Monoamine oxidase in young and adult rat brain capillaries. J Neural Transm 60(3–4):239–245

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Engel K, Wang J (2007) Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochem Pharmacol 73(1):147–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH RO1HL107495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma S. Darios.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, L.W., Darios, E.S. & Watts, S.W. An immunohistochemical analysis of SERT in the blood–brain barrier of the male rat brain. Histochem Cell Biol 144, 321–329 (2015). https://doi.org/10.1007/s00418-015-1343-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1343-1

Keywords

Navigation