Skip to main content
Log in

Systemic, but not cardiomyocyte-specific, deletion of the natriuretic peptide receptor guanylyl cyclase A increases cardiomyocyte number in neonatal mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Guanylyl cyclase A (GC-A), the receptor for atrial and B-type natriuretic peptides, is implicated in the regulation of blood pressure and cardiac growth. We used design-based stereological methods to examine the effect of GC-A inactivation on cardiomyocyte volume, number and subcellular composition in postnatal mice at day P2. In mice with global, systemic GC-A deletion, the cardiomyocyte number was significantly increased, demonstrating that hyperplasia is the main cause for the increase in ventricle weight in these early postnatal animals. In contrast, conditional, cardiomyocyte-restricted inactivation of GC-A had no significant effect on ventricle weight or cardiomyocyte number. The mean volume of cardiomyocytes and the myocyte-related volumes of the four major cell organelles (myofibrils, mitochondria, nuclei and sarcoplasm) were similar between genotypes. Taken together, systemic GC-A deficiency induces cardiac enlargement based on a higher number of normally composed and sized cardiomyocytes early after birth, whereas cardiomyocyte-specific GC-A abrogation is not sufficient to induce cardiac enlargement and has no effect on number, size and composition of cardiomyocytes. We conclude that postnatal cardiac hyperplasia in mice with global GC-A inactivation is provoked by systemic alterations, e.g., arterial hypertension. Direct GC-A-mediated effects in cardiomyocytes seem not to be involved in the regulation of myocyte proliferation at this early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anand-Srivastava MB, Trachte GJ (1993) Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45:455–497

    CAS  PubMed  Google Scholar 

  • Becker JR, Chatterjee S, Robinson TY, Bennett JS, Panakova D, Galindo CL, Zhong L, Shin JT, Coy SM, Kelly AE, Roden DM, Lim CC, MacRae CA (2014) Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development. Development 141:335–345. doi:10.1242/dev.100370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruel A, Nyengaard JR (2005) Design-based stereological estimation of the total number of cardiac myocytes in histological sections. Basic Res Cardiol 100:311–319. doi:10.1007/s00395-005-0524-9

    Article  CAS  PubMed  Google Scholar 

  • Cameron VA, Ellmers LJ (2003) Minireview: natriuretic peptides during development of the fetal heart and circulation. Endocrinology 144:2191–2194. doi:10.1210/en.2003-0127

    Article  CAS  PubMed  Google Scholar 

  • Cameron VA, Aitken GD, Ellmers LJ, Kennedy MA, Espiner EA (1996) The sites of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology 137:817–824. doi:10.1210/endo.137.3.8603590

    CAS  PubMed  Google Scholar 

  • Charng MJ, Frenkel PA, Lin Q, Yamada M, Schwartz RJ, Olson EN, Overbeek P, Schneider MD (1998) A constitutive mutation of ALK5 disrupts cardiac looping and morphogenesis in mice. Dev Biol 199:72–79

    Article  CAS  PubMed  Google Scholar 

  • Cheung CY (1995) Regulation of atrial natriuretic factor secretion and expression in the ovine fetus. Neurosci Biobehav Rev 19:159–164

    Article  CAS  PubMed  Google Scholar 

  • Cheung CY, Gibbs DM, Brace RA (1987) Atrial natriuretic factor in maternal and fetal sheep. Am J Physiol 252:E279–E282

    CAS  PubMed  Google Scholar 

  • de Bold AJ, Ma KK, Zhang Y, de Bold ML, Bensimon M, Khoshbaten A (2001) The physiological and pathophysiological modulation of the endocrine function of the heart. Can J Physiol Pharmacol 79:705–714

    Article  PubMed  Google Scholar 

  • Deloof S, Chatelain A (1994) Effect of blood volume expansion on basal plasma atrial natriuretic factor and adrenocorticotropic hormone secretions in the fetal rat at term. Biol Neonate 65:390–395

    Article  CAS  PubMed  Google Scholar 

  • Eisele JC, Schaefer IM, Randel NJ, Post H, Liebetanz D, Bruel A, Muhlfeld C (2008) Effect of voluntary exercise on number and volume of cardiomyocytes and their mitochondria in the mouse left ventricle. Basic Res Cardiol 103:12–21. doi:10.1007/s00395-007-0684-x

    Article  PubMed  Google Scholar 

  • Fernandez E, Siddiquee Z, Shohet RV (2001) Apoptosis and proliferation in the neonatal murine heart. Dev Dyn 221:302–310. doi:10.1002/dvdy.1139

    Article  CAS  PubMed  Google Scholar 

  • Garbers DL (1992) Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 71:1–4

    Article  CAS  PubMed  Google Scholar 

  • Gerdes AM, Moore JA, Hines JM, Kirkland PA, Bishop SP (1986) Regional differences in myocyte size in normal rat heart. Anat Rec 215:420–426. doi:10.1002/ar.1092150414

    Article  CAS  PubMed  Google Scholar 

  • Giraud GD, Louey S, Jonker S, Schultz J, Thornburg KL (2006) Cortisol stimulates cell cycle activity in the cardiomyocyte of the sheep fetus. Endocrinology 147:3643–3649. doi:10.1210/en.2006-0061

    Article  CAS  PubMed  Google Scholar 

  • Gruber C, Kohlstedt K, Loot AE, Fleming I, Kummer W, Muhlfeld C (2012a) Stereological characterization of left ventricular cardiomyocytes, capillaries, and innervation in the nondiabetic, obese mouse. Cardiovasc Pathol 21:346–354. doi:10.1016/j.carpath.2011.11.003

    Article  PubMed  Google Scholar 

  • Gruber C, Nink N, Nikam S, Magdowski G, Kripp G, Voswinckel R, Muhlfeld C (2012b) Myocardial remodelling in left ventricular atrophy induced by caloric restriction. J Anat 220:179–185. doi:10.1111/j.1469-7580.2011.01453.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Hersey RM, Nazir MA, Whitney KD, Klein RM, Sale RD, Hinton DA, Weisz J, Gattone VH (1989) Atrial natriuretic peptide in heart and specific binding in organs from fetal and newborn rats. Cell Biochem Funct 7:35–41. doi:10.1002/cbf.290070107

    Article  CAS  PubMed  Google Scholar 

  • Holtwick R, Gotthardt M, Skryabin B, Steinmetz M, Potthast R, Zetsche B, Hammer RE, Herz J, Kuhn M (2002) Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci USA 99:7142–7147. doi:10.1073/pnas.102650499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holtwick R, van EM, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407. doi:10.1172/JCI17061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • James TN (1998) Normal and abnormal consequences of apoptosis in the human heart. Annu Rev Physiol 60:309–325. doi:10.1146/annurev.physiol.60.1.309

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98:2703–2706. doi:10.1073/pnas.051625598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klaiber M, Kruse M, Volker K, Schroter J, Feil R, Freichel M, Gerling A, Feil S, Dietrich A, Londono JE, Baba HA, Abramowitz J, Birnbaumer L, Penninger JM, Pongs O, Kuhn M (2010) Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 105:583–595. doi:10.1007/s00395-010-0098-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107:975–984. doi:10.1172/JCI11273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709. doi:10.1161/01.RES.0000094745.28948.4D

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M (2004) Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol 99:76–82. doi:10.1007/s00395-004-0460-0

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E (2002) Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart 87:368–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68. doi:10.1038/378065a0

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O (1999) The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 96:7403–7408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mattfeldt T, Mall G, Gharehbaghi H, Moller P (1990) Estimation of surface area and length with the orientator. J Microsc 159:301–317

    Article  CAS  PubMed  Google Scholar 

  • Mendez J, Keys A (1961) Density and composition of mammalian muscle. Metabolism 9:184–188

    Google Scholar 

  • Morkin E (1993) Regulation of myosin heavy chain genes in the heart. Circulation 87:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Muhlfeld C, Ochs M (2014) Measuring structure—What’s the point in counting? Ann Anat 196:1–2. doi:10.1016/j.aanat.2013.09.002

    Article  PubMed  Google Scholar 

  • Muhlfeld C, Singer D, Engelhardt N, Richter J, Schmiedl A (2005) Electron microscopy and microcalorimetry of the postnatal rat heart (Rattus norvegicus). Comp Biochem Physiol A Mol Integr Physiol 141:310–318. doi:10.1016/j.cbpb.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  • Muhlfeld C, Nyengaard JR, Mayhew TM (2010) A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovasc Pathol 19:65–82. doi:10.1016/j.carpath.2008.10.015

    Article  PubMed  Google Scholar 

  • Nyengaard JR, Gundersen HJ (1992) The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J Microsc 165:427–431. doi:10.1111/j.1365-2818.1992.tb01497.x

    Article  Google Scholar 

  • Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Tierney PF, Chattergoon NN, Louey S, Giraud GD, Thornburg KL (2010) Atrial natriuretic peptide inhibits angiotensin II-stimulated proliferation in fetal cardiomyocytes. J Physiol 588:2879–2889. doi:10.1113/jphysiol.2010.191098

    Article  PubMed Central  PubMed  Google Scholar 

  • Pandey KN (2008) Emerging roles of natriuretic peptides and their receptors in pathophysiology of hypertension and cardiovascular regulation. J Am Soc Hypertens 2:210–226. doi:10.1016/j.jash.2008.02.001

    Article  PubMed Central  PubMed  Google Scholar 

  • Pandey KN (2011) Guanylyl cyclase/atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation. Can J Physiol Pharmacol 89:557–573. doi:10.1139/y11-054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey KN, Singh S (1990) Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem 265:12342–12348

    CAS  PubMed  Google Scholar 

  • Rosenfeld CR, Samson WK, Roy TA, Faucher DJ, Magness RR (1992) Vasoconstrictor-induced secretion of ANP in fetal sheep. Am J Physiol 263:E526–E533

    CAS  PubMed  Google Scholar 

  • Rosenzweig A, Seidman CE (1991) Atrial natriuretic factor and related peptide hormones. Annu Rev Biochem 60:229–255. doi:10.1146/annurev.bi.60.070191.001305

    Article  CAS  PubMed  Google Scholar 

  • Rubattu S, Sciarretta S, Morriello A, Calvieri C, Battistoni A, Volpe M (2010) NPR-C: a component of the natriuretic peptide family with implications in human diseases. J Mol Med (Berl) 88:889–897. doi:10.1007/s00109-010-0641-2

    Article  CAS  Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93:13176–13181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi SJ, Nguyen HT, Sharma GD, Navar LG, Pandey KN (2001) Genetic disruption of atrial natriuretic peptide receptor-A alters renin and angiotensin II levels. Am J Physiol Renal Physiol 281:F665–F673

    CAS  PubMed  Google Scholar 

  • Skryabin BV, Holtwick R, Fabritz L, Kruse MN, Veltrup I, Stypmann J, Kirchhof P, Sabrane K, Bubikat A, Voss M, Kuhn M (2004) Hypervolemic hypertension in mice with systemic inactivation of the (floxed) guanylyl cyclase-A gene by alphaMHC-Cre-mediated recombination. Genesis 39:288–298. doi:10.1002/gene.20056

    Article  CAS  PubMed  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    Article  CAS  PubMed  Google Scholar 

  • Sundgren NC, Giraud GD, Stork PJ, Maylie JG, Thornburg KL (2003) Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes. J Physiol 548:881–891. doi:10.1113/jphysiol.2003.038778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi T, Allen PD, Izumo S (1992) Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca(2+)-ATPase gene. Circ Res 71:9–17

    Article  CAS  PubMed  Google Scholar 

  • Thornburg K, Jonker S, O’Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106:289–299. doi:10.1016/j.pbiomolbio.2010.11.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weibel ER (1979) Stereological methods. Vol I: Practical methods for biological morphometry. Academic Press, London

    Google Scholar 

  • Wu CF, Bishopric NH, Pratt RE (1997) Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 272:14860–14866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Susanne Kuhlmann, Christa Lichtenberg and Katharina Völker for expert technical assistance with the preparation of hearts and microscopic sections. This study was supported by the DFG via the excellence cluster REBIRTH (to CM), by the Bundesministerium für Bildung und Forschung (BMBF 01 EO1004) and the DFG (SFB 688) (to MK).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All animal experiments were carried out according to the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health and were approved by the local animal care committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Schipke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schipke, J., Roloff, K., Kuhn, M. et al. Systemic, but not cardiomyocyte-specific, deletion of the natriuretic peptide receptor guanylyl cyclase A increases cardiomyocyte number in neonatal mice. Histochem Cell Biol 144, 365–375 (2015). https://doi.org/10.1007/s00418-015-1337-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1337-z

Keywords

Navigation