Skip to main content
Log in

Inhibition of hyaluronan synthesis alters sulfated glycosaminoglycans deposition during chondrogenic differentiation in ATDC5 cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In chondrogenic differentiation, expression and collaboration of specific molecules, such as aggrecan and type II collagen, in extracellular matrix (ECM) are crucial. However, few studies have clarified the roles of hyaluronan (HA) in proteoglycan aggregation during chondrogenic differentiation. We assessed the roles of HA in sulfated glycosaminoglycans deposition during chondrogenic differentiation by means of 4-methylumbelliferone (4-MU), an HA synthase inhibitor, using ATDC5 cells. ATDC5 cells were treated with 0.5 mM 4-MU for 7 or 21 days after induction of chondrogenic differentiation with insulin. Depositions of sulfated glycosaminoglycans were evaluated with Alcian blue staining. mRNA expression of ECM molecules was determined using real-time RT-PCR. The deposition of aggrecan and versican was investigated with immunohistochemical staining using specific antibodies. Effects of 4-MU on HA concentrations were analyzed by HA binding assay. 4-MU suppressed the positivity of Alcian blue staining, although this delay was reversible. Interestingly, stronger positivity of Alcian blue staining was observed at day 21 in cultures with 4-MU discontinuation than in the control. 4-MU significantly increased the mRNA expression of aggrecan, versican, and type II collagen, which was consistent with increased deposition of aggrecan and versican. The HA concentration in ECM and cell-associated region was significantly suppressed with 4-MU treatment. We conclude that the inhibition of HA synthesis slows sulfated glycosaminoglycans deposition during chondrogenic differentiation despite the increased deposition of other ECM molecules. Transient starvation of HA with 4-MU accelerates chondrogenic ECM formation, suggesting its potential to stimulate chondrogenic differentiation with adequate use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arai E, Nishida Y, Wasa J, Urakawa H, Zhuo L, Kimata K, Kozawa E, Futamura N, Ishiguro N (2011) Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer 105(12):1839–1849. doi:10.1038/bjc.2011.459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atsumi T, Miwa Y, Kimata K, Ikawa Y (1990) A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Clarkin CE, Allen S, Wheeler-Jones CP, Bastow ER, Pitsillides AA (2011) Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol 30(3):163–168. doi:10.1016/j.matbio.2011.01.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frost GI, Csoka AB, Wong T, Stern R (1997) Purification, cloning, and expression of human plasma hyaluronidase. Biochem Biophys Res Commun 236(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97(1):33–44. doi:10.1002/jcb.20652

    Article  CAS  PubMed  Google Scholar 

  • Hardingham TE, Fosang AJ (1992) Proteoglycans: many forms and many functions. FASEB J 6(3):861–870

    CAS  PubMed  Google Scholar 

  • Hascall VC, Heinegard D (1974) Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J Biol Chem 249(13):4232–4241

    CAS  PubMed  Google Scholar 

  • Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T (2004) Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum 50(2):516–525. doi:10.1002/art.20004

    Article  CAS  PubMed  Google Scholar 

  • Kakizaki I, Kojima K, Takagaki K, Endo M, Kannagi R, Ito M, Maruo Y, Sato H, Yasuda T, Mita S, Kimata K, Itano N (2004) A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J Biol Chem 279(32):33281–33289. doi:10.1074/jbc.M405918200

    Article  CAS  PubMed  Google Scholar 

  • Kimata K, Oike Y, Tani K, Shinomura T, Yamagata M, Uritani M, Suzuki S (1986) A large chondroitin sulfate proteoglycan (PG-M) synthesized before chondrogenesis in the limb bud of chick embryo. J Biol Chem 261(29):13517–13525

    CAS  PubMed  Google Scholar 

  • Knudson CB, Knudson W (1993) Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 7(13):1233–1241

    CAS  PubMed  Google Scholar 

  • Knudson CB, Toole BP (1985) Changes in the pericellular matrix during differentiation of limb bud mesoderm. Dev Biol 112(2):308–318

    Article  CAS  PubMed  Google Scholar 

  • Knudson W, Bartnik E, Knudson CB (1993) Assembly of pericellular matrices by COS-7 cells transfected with CD44 lymphocyte-homing receptor genes. Proc Natl Acad Sci USA 90(9):4003–4007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kultti A, Pasonen-Seppanen S, Jauhiainen M, Rilla KJ, Karna R, Pyoria E, Tammi RH, Tammi MI (2009) 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res 315(11):1914–1923. doi:10.1016/j.yexcr.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6(7):2397–2404

    CAS  PubMed  Google Scholar 

  • Maleski MP, Knudson CB (1996) Hyaluronan-mediated aggregation of limb bud mesenchyme and mesenchymal condensation during chondrogenesis. Exp Cell Res 225(1):55–66. doi:10.1006/excr.1996.0156

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Knudson CB, Nietfeld JJ, Margulis A, Knudson W (1999) Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. J Biol Chem 274(31):21893–21899

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Knudson CB, Eger W, Kuettner KE, Knudson W (2000) Osteogenic protein 1 stimulates cells-associated matrix assembly by normal human articular chondrocytes: up-regulation of hyaluronan synthase, CD44, and aggrecan. Arthritis Rheum 43(1):206–214. doi:10.1002/1529-0131(200001)43:1<206:AID-ANR25>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Knudson CB, Knudson W (2004) Osteogenic protein-1 inhibits matrix depletion in a hyaluronan hexasaccharide-induced model of osteoarthritis. Osteoarthr Cartil 12(5):374–382. doi:10.1016/j.joca.2004.01.008

    Article  PubMed  Google Scholar 

  • Rilla K, Pasonen-Seppanen S, Rieppo J, Tammi M, Tammi R (2004) The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol 123(4):708–714. doi:10.1111/j.0022-202X.2004.23409.x

    Article  CAS  PubMed  Google Scholar 

  • Schwartz NB, Lyle S, Ozeran JD, Li H, Deyrup A, Ng K, Westley J (1998) Sulfate activation and transport in mammals: system components and mechanisms. Chem Biol Interact 109(1–3):143–151

    Article  CAS  PubMed  Google Scholar 

  • Schwartz Z, Griffon DJ, Fredericks LP, Lee HB, Weng HY (2011) Hyaluronic acid and chondrogenesis of murine bone marrow mesenchymal stem cells in chitosan sponges. Am J Vet Res 72(1):42–50. doi:10.2460/ajvr.72.1.42

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Fukada K, Imai H, Abe T, Yamashita Y (2003) In situ hybridization and immunohistochemistry of versican, aggrecan and link protein, and histochemistry of hyaluronan in the developing mouse limb bud cartilage. J Anat 203(4):425–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinomura T, Nishida Y, Ito K, Kimata K (1993) cDNA cloning of PG-M, a large chondroitin sulfate proteoglycan expressed during chondrogenesis in chick limb buds. Alternative spliced multiforms of PG-M and their relationships to versican. J Biol Chem 268(19):14461–14469

    CAS  PubMed  Google Scholar 

  • Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133(2):457–468

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Tanimoto K, Ohno S, Nakatani Y, Honda K, Tanaka N, Doi T, Ohno-Nakahara M, Yoneno K, Ueki M, Tanne K (2005) The metabolism of hyaluronan in cultured rabbit growth plate chondrocytes during differentiation. Biochim Biophys Acta 1743(1–2):57–63. doi:10.1016/j.bbamcr.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  • Toole BP (1997) Hyaluronan in morphogenesis. J Intern Med 242(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Urakawa H, Nishida Y, Wasa J, Arai E, Zhuo L, Kimata K, Kozawa E, Futamura N, Ishiguro N (2012) Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo. Int J Cancer 130(2):454–466. doi:10.1002/ijc.26014

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa K, Kitamura N, Kurokawa T, Gong JP, Nohara Y, Yasuda K (2013) Hyaluronic acid affects the in vitro induction effects of synthetic PAMPS and PDMAAm hydrogels on chondrogenic differentiation of ATDC5 cells, depending on the level of concentration. BMC Musculoskelet Disord 14:56. doi:10.1186/1471-2474-14-56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu L, Zhuo L, Kimata K, Yamaguchi E, Watanabe H, Aronica MA, Hascall VC, Baba K (2010) Deficiency in the serum-derived hyaluronan-associated protein-hyaluronan complex enhances airway hyperresponsiveness in a murine model of asthma. Int Arch Allergy Immunol 153(3):223–233. doi:10.1159/000314362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Eri Ishihara for secretarial assistance. This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan [Grant-in-Aid 20591751 for Scientific Research (C)], and by the Suzuken Memorial Foundation. Funding sources had no role in the study design, collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nishida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effect of 4-MU on mRNA expression of UDP-glucose dehydrogenase (UGDH) in cultured ATDC5 cells at day 0–day 21. The data depict relative mRNA expression standardized by that of GAPDH. Error bars express ± standard error of mean (S.E.M.) (TIFF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, Y., Kozawa, E., Urakawa, H. et al. Inhibition of hyaluronan synthesis alters sulfated glycosaminoglycans deposition during chondrogenic differentiation in ATDC5 cells. Histochem Cell Biol 144, 167–177 (2015). https://doi.org/10.1007/s00418-015-1325-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1325-3

Keywords

Navigation