Skip to main content
Log in

Dynamic changes of nuclear RNA foci in proliferating DM1 cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Nuclear RNA foci are molecular hallmarks of myotonic dystrophy type 1 (DM1). However, no designated study has investigated their formation and changes in proliferating cells. Proliferating cells, as stem cells, consist of an important cellular pool in the human body. The revelation of foci changes in these cells might shed light on the effects of the mutation on these specific cells and tissues. In this study, we used human DM1 iPS-cell-derived neural stem cells (NSCs) as cellular models to investigate the formation and dynamic changes of RNA foci in proliferating cells. Human DM1 NSCs derived from human DM1 iPS cells were cultured under proliferation conditions and nonproliferation conditions following mitomycin C treatment. The dynamic changes of foci during the cell cycle were investigated by fluorescence in situ hybridization. We found RNA foci formed and dissociated during the cell cycle. Nuclear RNA foci were most prominent in number and size just prior to entering mitosis (early prophase). During mitosis, most foci disappeared. After entering interphase, RNA foci accumulated again in the nuclei. After stopping cell dividing by treatment of mitomycin C, the number of nuclear RNA foci increased significantly. In summary, DM1 NSC nuclear RNA foci undergo dynamic changes during cell cycle, and mitosis is a mechanism to decrease foci load in the nuclei, which may explain why dividing cells are less affected by the mutation. The dynamic changes need to be considered when using foci as a marker to monitor the effects of therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashizawa T, Sarkar PS (2011) Myotonic dystrophy types 1 and 2. Handb Clin Neurol 101:193–237

    Article  PubMed  Google Scholar 

  • Bassez G, Lazarus A, Desguerre I, Varin J, Laforet P, Becane HM, Meune C, Arne-Bes MC, Ounnoughene Z, Radvanyi H, Eymard B, Duboc D (2004) Severe cardiac arrhythmias in young patients with myotonic dystrophy type 1. Neurology 63:1939–1941

    Article  CAS  PubMed  Google Scholar 

  • Childs-Disney JL, Stepniak-Konieczna E, Tran T, Yildirim I, Park H, Chen CZ, Hoskins J, Southall N, Marugan JJ, Patnaik S, Zheng W, Austin CP, Schatz GC, Sobczak K, Thornton CA, Disney MD (2013) Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun 4:2044

    Article  PubMed Central  PubMed  Google Scholar 

  • Dansithong W, Paul S, Comai L, Reddy S (2005) MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1. J Biol Chem 280:5773–5780

    Article  CAS  PubMed  Google Scholar 

  • Dansithong W, Wolf CM, Sarkar P, Paul S, Chiang A, Holt I, Morris GE, Branco D, Sherwood MC, Comai L, Berul CI, Reddy S (2008) Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features. PLoS One 3:e3968

    Article  PubMed Central  PubMed  Google Scholar 

  • Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, Swanson MS, Ranum LP (2009) RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 5:e1000600

    Article  PubMed Central  PubMed  Google Scholar 

  • de Leon MB, Cisneros B (2008) Myotonic dystrophy 1 in the nervous system: from the clinic to molecular mechanisms. J Neurosci Res 86:18–26

    Article  PubMed  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lopez A, Llamusi B, Orzaez M, Perez-Paya E, Artero RD (2011) In vivo discovery of a peptide that prevents CUG–RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models. Proc Natl Acad Sci U S A 108:11866–11871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giagnacovo M, Malatesta M, Cardani R, Meola G, Pellicciari C (2012) Nuclear ribonucleoprotein-containing foci increase in size in non-dividing cells from patients with myotonic dystrophy type 2. Histochem Cell Biol 138:699–707

    Article  CAS  PubMed  Google Scholar 

  • Groh WJ, Groh MR, Saha C, Kincaid JC, Simmons Z, Ciafaloni E, Pourmand R, Otten RF, Bhakta D, Nair GV, Marashdeh MM, Zipes DP, Pascuzzi RM (2008) Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 358:2688–2697

    Article  CAS  PubMed  Google Scholar 

  • Harper P (2001a) Major problems in neurology, in Myotonic dystrophy, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Harper P (2001b) Myotonic dystrophy, 3rd edn. WB Saunders, London

    Google Scholar 

  • Jasinska A, Michlewski G, de Mezer M, Sobczak K, Kozlowski P, Napierala M, Krzyzosiak WJ (2003) Structures of trinucleotide repeats in human transcripts and their functional implications. Nucleic Acids Res 31:5463–5468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA (2004) Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 13:3079–3088

    Article  CAS  PubMed  Google Scholar 

  • Ketley A, Chen CZ, Li X, Arya S, Robinson TE, Granados-Riveron J, Udosen I, Morris GE, Holt I, Furling D, Chaouch S, Haworth B, Southall N, Shinn P, Zheng W, Austin CP, Hayes CJ, Brook JD (2014) High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines. Hum Mol Genet 23:1551–1562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kino Y, Mori D, Oma Y, Takeshita Y, Sasagawa N, Ishiura S (2004) Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Hum Mol Genet 13:495–507

    Article  CAS  PubMed  Google Scholar 

  • Langlois MA, Lee NS, Rossi JJ, Puymirat J (2003) Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts. Mol Ther 7:670–680

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Cooper TA (2009) Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans 37:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Bennett CF, Cooper TA (2012) RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A 109:4221–4226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA (2006) Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 15:2087–2097

    Article  CAS  PubMed  Google Scholar 

  • Llamusi B, Artero R (2008) Molecular effects of the CTG repeats in mutant dystrophia myotonica protein kinase gene. Curr Genomics 9:509–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahadevan MS, Yadava RS, Yu Q, Balijepalli S, Frenzel-McCardell CD, Bourne TD, Phillips LH (2006) Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy. Nat Genet 38:1066–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, Krym M, Thornton CA (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289:1769–1773

    Article  CAS  PubMed  Google Scholar 

  • Mankodi A, Teng-Umnuay P, Krym M, Henderson D, Swanson M, Thornton CA (2003) Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol 54:760–768

    Article  CAS  PubMed  Google Scholar 

  • Mulders SA, van den Broek WJ, Wheeler TM, Croes HJ, van Kuik-Romeijn P, de Kimpe SJ, Furling D, Platenburg GJ, Gourdon G, Thornton CA, Wieringa B, Wansink DG (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A 106:13915–13920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orengo JP, Chambon P, Metzger D, Mosier DR, Snipes GJ, Cooper TA (2008) Expanded CTG repeats within the DMPK 3′ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc Natl Acad Sci U S A 105:2646–2651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkesh R, Childs-Disney JL, Nakamori M, Kumar A, Wang E, Wang T, Hoskins J, Tran T, Housman D, Thornton CA, Disney MD (2012) Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc 134:4731–4742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277

    Article  CAS  PubMed  Google Scholar 

  • Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL (2007) Huntington’s disease-like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 61:272–282

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, Ishino F, Saito Y, Murayama S, Yoshida M, Hashizume Y, Takahashi Y, Tsuji S, Shimizu N, Toda T, Ishikawa K, Mizusawa H (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 85:544–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schara U, Schoser BG (2006) Myotonic dystrophies type 1 and 2: a summary on current aspects. Semin Pediatr Neurol 13:71–79

    Article  PubMed  Google Scholar 

  • Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, Schneider A, Richard S, Willemsen R, Elliott DJ, Hagerman PJ, Charlet-Berguerand N (2010) Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J 29:1248–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seznec H, Agbulut O, Sergeant N, Savouret C, Ghestem A, Tabti N, Willer JC, Ourth L, Duros C, Brisson E, Fouquet C, Butler-Browne G, Delacourte A, Junien C, Gourdon G (2001) Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet 10:2717–2726

    Article  CAS  PubMed  Google Scholar 

  • Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH (1995) Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 128:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Tian B, White RJ, Xia T, Welle S, Turner DH, Mathews MB, Thornton CA (2000) Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA 6:79–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA (2007) Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J Clin Invest 117:2802–2811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA (2009) Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 106:18551–18556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT, Thornton CA (2009) Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325:336–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488:111–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White MC, Gao R, Xu W, Mandal SM, Lim JG, Hazra TK, Wakamiya M, Edwards SF, Raskin S, Teive HA, Zoghbi HY, Sarkar PS, Ashizawa T (2010) Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet 6:e1000984

    Article  PubMed Central  PubMed  Google Scholar 

  • Wong CH, Nguyen L, Peh J, Luu LM, Sanchez JS, Richardson SL, Tuccinardi T, Tsoi H, Chan WY, Chan HY, Baranger AM, Hergenrother PJ, Zimmerman SC (2014) Targeting toxic RNAs that cause myotonic dystrophy type 1 (DM1) with a bisamidinium inhibitor. J Am Chem Soc 136:6355–6361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia G, Santostefano KE, Goodwin M, Liu J, Subramony SH, Swanson MS, Terada N, Ashizawa T (2013) Generation of neural cells from DM1 induced pluripotent stem cells as cellular model for the study of central nervous system neuropathogenesis. Cell Reprogram 15:166–177

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported in part by NIH Grant K08AR064836-01(GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangbin Xia or Tetsuo Ashizawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, G., Ashizawa, T. Dynamic changes of nuclear RNA foci in proliferating DM1 cells. Histochem Cell Biol 143, 557–564 (2015). https://doi.org/10.1007/s00418-015-1315-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1315-5

Keywords

Navigation