Skip to main content
Log in

Ultrastructural changes in the progress of natural Scrapie regardless fixation protocol

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Because few studies regarding ultrastructural pathological changes associated with natural prion diseases have been performed, the present study primarily intended to determine consistent lesions at the subcellular level and to demonstrate whether these changes are evident regardless of the fixation protocol. Thus far, no assessment method has been developed for classifying the possible variations according to the disease stage, although such an assessment would contribute to clarifying the pathogenesis of this neurodegenerative disease. Therefore, animals at different disease stages were included here. This study presents the first description of lesions associated with natural Scrapie in the cerebellum. Vacuolation, which preferentially occurs around Purkinje cells and which displays a close relation with glial cells, is one of the most novel observations provided in this study. The disruption of hypolemmal cisterns in this neuronal type and the presence of a primary cilium in the granular layer both represent the first findings concerning prion diseases. The possibility of including samples regardless of their fixation protocol is confirmed in this work. Therefore, a high proportion of tissue bank samples that are currently being wasted can be included in ultrastructural studies, which constitute a valuable source for information regarding physiological and pathological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banno T, Kohno K (1996) Conformational changes of smooth endoplasmic reticulum induced by brief anoxia in rat Purkinje cells. J Comp Neurol 369(3):462–471

    Article  CAS  PubMed  Google Scholar 

  • Bastian FO (1979) Spiroplasma-like inclusions in Creutzfeldt–Jakob disease. Arch Pathol Lab Med 103:665–670

    CAS  PubMed  Google Scholar 

  • Bignami A, Parry HB (1971) Aggregations of 35-nanometer particles associated with neuronal cytopathic changes in natural scrapie. Science 171(3969):389–390

    Article  CAS  PubMed  Google Scholar 

  • Bignami A, Parry HB (1972a) Electron microscopic studies of the brain of sheep with natural scrapie. The fine structure of neuronal vacuolation. Brain 95:319–326

    Article  CAS  PubMed  Google Scholar 

  • Bignami A, Parry HB (1972b) Electron microscopic studies of the brain of sheep with natural scrapie. II. The small nerve processes in neuronal degeneration. Brain 95:487–494

    Article  CAS  PubMed  Google Scholar 

  • Chandler RI (1967) Ultrastructural pathology of scrapie in the mouse: an electron microscopic study of spinal cord and cerebellar areas. Institute for Research on Animal Diseases, Compton

    Google Scholar 

  • Dingemans KP, Ramkema M (2001) Immunoelectron microscopy on material retrieved from paraffin: accurate sampling on the basis of stained paraffin sections. Ultrastruct Pathol 25(3):201–206

    Article  CAS  PubMed  Google Scholar 

  • Ersdal C, Simmons MM, Goodsir C, Martin S, Jeffery M (2003) Sub-cellular pathology of scrapie: coated pits are increased in PrP codon 136 alanine homozygous scrapie-affected sheep. Acta Neuropathol 106:17–28

    PubMed  Google Scholar 

  • Ersdal C, Simmons MM, González L, Goodsir CM, Martin S, Jeffrey M (2004) Relationships between ultrastructural scrapie pathology and patterns of abnormal prion protein accumulation. Acta Neuropathol 107(5):428–438

    Article  PubMed  Google Scholar 

  • Ersdal C, Goodsir CM, Simmons MM, McGovern G, Jeffrey M (2009) Abnormal prion protein is associated with changes of plasma membranes and endocytosis in bovine spongiform encephalopathy (BSE)-affected cattle brains. Neuropathol Appl Neurobiol 35(3):259–271

    Article  CAS  PubMed  Google Scholar 

  • Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Fevrier B, Vilette D, Archer F et al (2004) Cells release prions in association with exosomes. Proc Nat Acad Sci USA 101(26):9683–9688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franke WW, Krien S, Brown RM Jr (1969) Simultaneous glutaraldehyde-osmium tetroxide fixation with postosmication. An improved fixation procedure for electron microscopy of plant and animal cells. Histochemie 19(2):162–164

    Article  CAS  PubMed  Google Scholar 

  • Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris DA (2001) Biosynthesis and cellular processing of the prion protein. Adv Protein Chem 57:203–228

    CAS  PubMed  Google Scholar 

  • Hirano A (1989) Neurons, astrocytes and ependyma. In: Davies RL, Roberts DM (eds) Textbook of neuropathology. William & Wilkins, Philadelphia, pp 1–94

    Google Scholar 

  • Hope J, Morton LJ, Farquhar CF, Multhaup G, Beyreuther K, Kimberlin RH (1986) The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO J 5(10):2591–2597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffrey M, Fraser JR (2000) Tubulovesicular particles occur early in the incubation period of murine scrapie. Acta Neuropathol (Berl) 99:525–528

    Article  CAS  Google Scholar 

  • Jeffrey M, Scott JR, Fraser H (1991) Scrapie inoculation of mice: light and electron microscopy of the superior colliculi. Acta Neuropathol 81:562–571

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey M, Goodsir CM, Race RE, Chesebro B (2004) Scrapie-specific neuronal lesions are independent of neuronal PrP expression. Ann Neurol 55(6):781–792

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey M, McGovern G, Goodsir CM, Siso S, González L (2009) Strain-associated variations in abnormal PrP trafficking of sheep scrapie. Brain Pathol 19(1):1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keryer G, Pineda JR, Liot G et al (2011) Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease. J Clin Invest 121(11):4372–4382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lafarga M, Berciano MT, Suarez I, Viadero CF, Andres MA, Berciano J (1991) Cytology and organization of reactive astroglia in human cerebellar cortex with severe loss of granule cells: a study on the ataxic form of Creutzfeldt-Jakob disease. Neuroscience 40(2):337–352

    Article  CAS  PubMed  Google Scholar 

  • Laszlo L, Lowe J, Self T et al (1992) Lysosomes as key organelles in the pathogenesis of prion encephalopathies. J Pathol 166(4):333–341

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Gleeson JG (2011) Cilia in the nervous system: linking cilia function and eurodevelopmental disorders. Curr Opin Neurol 24(2):98–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Liberski PP (1994) Tubulovesicular structures (TVS): virus-like particles specific for all subacute spongiform virus encephalopathies—what are they really? Arch Immunol Ther Exp (Warsz) 42(2):89–93

    CAS  Google Scholar 

  • Liberski PP (2008a) Tubulovesicular structures are present in brains of hamsters infected with the Echigo-1 strain of Creutzfeldt–Jakob disease agent. Acta Neurobiol Exp (Wars) 68(1):39–42

    Google Scholar 

  • Liberski PP (2008b) The tubulovesicular structures—the ultrastructural hallmark for all prion diseases. Acta Neurobiol Exp 68:113–121

    Google Scholar 

  • Liberski PP, Brown P (2007) Disease-specific particles without prion protein in prion diseases—phenomenon or epiphenomenon? Neuropathol Appl Neurobiol 33(4):395–397

    Article  CAS  PubMed  Google Scholar 

  • Liberski PP, Yanagihara R, Gibbs CJ Jr, Gajdusek DC (1990) Appearance of tubulovesicular structures in experimental Creutzfeldt–Jakob disease and scrapie precedes the onset of clinical disease. Acta Neuropathol 79:349–354

    Article  CAS  PubMed  Google Scholar 

  • Liberski PP, Yanagihara R, Wells GA, Gibbs CJ Jr, Gajdusek DC (1992a) Comparative ultrastructural neuropathology of naturally occurring bovine spongiform encephalopathy and experimentally induced scrapie and Creutzfeldt–Jakob disease. J Comp Pathol 106(4):361–381

    Article  CAS  PubMed  Google Scholar 

  • Liberski PP, Budka H, Sluga E, Barcikowska M, Kwiecinski H (1992b) Tubulovesicular structures in Creutzfeldt–Jakob disease. Acta Neuropathol 84:238–243

    Article  CAS  PubMed  Google Scholar 

  • Liberski PP, Streichenberger N, Giraud P et al (2005) Ultrastructural pathology of prion diseases revisited: brain biopsy studies. Neuropathol Appl Neurobiol 31(1):88–96

    Article  CAS  PubMed  Google Scholar 

  • Liberski R, Baderca F, Alexa A et al (2009) The value of the reprocessing method of paraffin-embedded biopsies for transmission electron microscopy. Rom J Morphol Embryol 50(4):613–617

    Google Scholar 

  • Liberski PP, Sikorska B, Wells GA, Hawkins SA, Dawson M, Simmons MM (2012) Ultrastructural findings in pigs experimentally infected with bovine spongiform encephalopathy agent. Folia Neuropathol 50(1):89–98

    CAS  PubMed  Google Scholar 

  • Lighezan R, Baderca F, Alexa A, Iacovliev M, Bonţe D, Murărescu ED, Nebunu A (2009) The value of the reprocessing method of paraffin-embedded biopsies for transmission electron microscopy. Rom J Morphol Embryol 50(4):613–617

    PubMed  Google Scholar 

  • Luesma MJ, Cantarero I, Castiella T, Soriano M, Garcia-Verdugo JM, Junquera C (2013) Enteric neurons show a primary cilium. J Cell Mol Med 17(1):147–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merz PA, Somerville RA, Wisniewski HM, Iqbal K (1981) Abnormal fibrils from scrapie-infected brain. Acta Neuropathol 54(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Murphy RF (1999) Maturation models for endosome and lysosome biogenesis. Trends Cell Biol 1:77–82

    Article  Google Scholar 

  • Nasr SH, Markowitz GS, Valeri AM, Yu Z, Chen L, D’Agati VD (2007) Thin basement membrane nephropathy cannot be diagnosed reliably in deparaffinized, formalin-fixed tissue. Nephrol Dial Transplant 22(4):1228–1232

    Article  PubMed  Google Scholar 

  • Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53(3):213–220

    Article  CAS  PubMed  Google Scholar 

  • Ogiyama Y, Ohashi M (1994) Electron microscopic examination of cutaneous lesions by the quick re-embedding method from paraffin-embedded blocks. J Cutan Pathol 21(3):239–246

    Article  CAS  PubMed  Google Scholar 

  • Palade GE, Porter KR (1954) Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med 100(6):641–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson R, Turnbull J (2012) Sonic hedgehog is cytoprotective against oxidative challenge in a cellular model of amyotrophic lateral sclerosis. J Mol Neurosci 47(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Stoorvagel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes JM, Hoenig EM (1981) Intracellular spiral inclusions in cerebral cell processes in Creutzfeldt–Jakob disease. J Neuropathol Exp Neurol 40:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarasa R, Becher D, Badiola JJ, Monzón M (2013) A comparative study of modified confirmatory techniques and additional immunobased methods for non-conclusive Bovine Spongiform Encephalopathy cases. BMC Vet Res 9:212

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki S, Mizoi S, Akashima A, Shinagawa M, Goto H (1986) Spongiform encephalopathy in sheep scrapie: electron microscopic observations. Nippon Juigaku Zasshi 48:791–796

    Article  CAS  PubMed  Google Scholar 

  • van den Bergh Weerman MA, Dingemans KP (1984) Rapid deparaffinization for electron microscopy. Ultrastruct Pathol 7(1):55–57

    Article  PubMed  Google Scholar 

  • van Deurs B, Holm PK, Kayser L, Sandvig K, Hansen SH (1993) Multivesicular bodies in HEp-2 cells are maturing endosomes. Eur J Cell Biol 61:208–224

    PubMed  Google Scholar 

  • van Harreveld A, Khattab FI (1968) Perfusion fixation with glutaraldehyde and post-fixation with osmium tetroxide for electron microscopy. J Cell Sci 3(4):579–594

    PubMed  Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1980) Ciliated pericarya, ‘peptidergic’ synapses and supraependymal structures in the guinea pig hypothalamus. Acta Acad Sci Hung 31:373–394

    CAS  Google Scholar 

  • von Bartheld CS, Altick AL (2011) Multivesicualr bodies in neurons: distribution, protein content and trafficking functions. Progress in Neurobiol 93:313–340

    Article  Google Scholar 

  • Wang NS, Minassian H (1987) The formaldehyde-fixed and paraffin-embedded tissues for diagnostic transmission electron microscopy: a retrospective and prospective study. Hum Pathol 18(7):715–727

    Article  CAS  PubMed  Google Scholar 

  • Westrum LE, Lund RD (1966) Formalin perfusion for correlative light- and electron-microscopical studies of the nervous system. J Cell Sci X:229–238

    Google Scholar 

  • Worthen DM, Wickham MG (1972) Scanning electron microscopy tissue preparation. Invest Ophthalmol 11(3):133–136

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mario Soriano for his excellent technical support.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Monzón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarasa, R., Junquera, C., Toledano, A. et al. Ultrastructural changes in the progress of natural Scrapie regardless fixation protocol. Histochem Cell Biol 144, 77–85 (2015). https://doi.org/10.1007/s00418-015-1314-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1314-6

Keywords

Navigation