Skip to main content
Log in

Co-expression of the homologous proteases fibroblast activation protein and dipeptidyl peptidase-IV in the adult human Langerhans islets

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Fibroblast activation protein (FAP, seprase, EC 3.4.21.B28) and dipeptidyl peptidase-IV (DPP-IV, CD26, EC 3.4.14.5) are homologous serine proteases implicated in the modulation of the bioavailability and thus the function of a number of biologically active peptides. In spite of their generally nonoverlapping expression patterns, DPP-IV and FAP are co-expressed and probably co-regulated in certain cell types suggesting that for some biological processes their functional synergy is essential. By an in situ enzymatic activity assay, we show an abundant DPP-IV-like enzymatic activity sensitive to a highly specific DPP-IV inhibitor sitagliptin and corresponding DPP-IV immunoreactivity in the adult human islets of Langerhans. Moreover, the homologous protease FAP was present in the human endocrine pancreas and was co-expressed with DPP-IV. DPP-IV and FAP were found in the pancreatic alpha cells as determined by the co-localization with glucagon immunoreactivity. In summary, we show abundant enzymatic activity of the canonical DPP-IV (CD26) in Langerhans islets in the natural tissue context and demonstrate for the first time the co-expression of FAP and DPP-IV in pancreatic alpha cells in adult humans. Given their ability to proteolytically modify several biologically active peptides, both proteases have the potential to modulate the paracrine signaling in the human Langerhans islets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aertgeerts K et al (2005) Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J Biol Chem 280:19441–19444

    Article  CAS  PubMed  Google Scholar 

  • Ajami K et al (2008) Stromal cell-derived factors 1alpha and 1beta, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8. FEBS Lett 582:819–825

    Article  CAS  PubMed  Google Scholar 

  • Balaziova E, Busek P, Stremenova J, Sromova L, Krepela E, Lizcova L, Sedo A (2011) Coupled expression of dipeptidyl peptidase-IV and fibroblast activation protein-alpha in transformed astrocytic cells. Mol Cell Biochem 354:283–289

    Article  CAS  PubMed  Google Scholar 

  • Bjelke JR, Christensen J, Nielsen PF, Branner S, Kanstrup AB, Wagtmann N, Rasmussen HB (2006) Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. Biochem J 396:391–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bosco D et al (2010) Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 59:1202–1210. doi:10.2337/db09-1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097. doi:10.1369/jhc.5C6684.2005

    Article  CAS  PubMed  Google Scholar 

  • Busek P, Sedo A (2013) Dipeptidyl peptidase-IV and related proteases in brain tumors. In: Lichtor T (ed) Evolution of the molecular biology of brain tumors and the therapeutic implications. InTech. doi:10.5772/53888

  • Busek P, Malik R, Sedo A (2004) Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer. Int J Biochem Cell Biol 36:408–421

    Article  CAS  PubMed  Google Scholar 

  • Busek P et al (2012) Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol 44:738–747. doi:10.1016/j.biocel.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  • Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC (2013) Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 62:2595–2604. doi:10.2337/db12-1686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339. doi:10.1073/pnas.0510790103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen SJ et al (2008) Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 37:154–158

    Article  CAS  PubMed  Google Scholar 

  • Dinjens WN, ten Kate J, van der Linden EP, Wijnen JT, Khan PM, Bosman FT (1989) Distribution of adenosine deaminase complexing protein (ADCP) in human tissues. J Histochem Cytochem 37:1869–1875

    Article  CAS  PubMed  Google Scholar 

  • Donath MY, Burcelin R (2013) GLP-1 effects on islets: hormonal, neuronal, or paracrine? Diabetes Care 36(Suppl 2):S145–S148. doi:10.2337/dcS13-2015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drucker DJ (2013) Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls. Diabetes 62:3316–3323. doi:10.2337/db13-0822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghersi G, Dong H, Goldstein LA, Yeh Y, Hakkinen L, Larjava HS, Chen WT (2002) Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem 277:29231–29241

    Article  CAS  PubMed  Google Scholar 

  • Ghersi G, Zhao Q, Salamone M, Yeh YY, Zucker S, Chen WT (2006) The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res 66:4652–4661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldstein LA, Ghersi G, Pineiro-Sanchez ML, Salamone M, Yeh Y, Flessate D, Chen WT (1997) Molecular cloning of seprase: a serine integral membrane protease from human melanoma. Biochim Biophys Acta 1361:11–19

    Article  PubMed  Google Scholar 

  • Gorrell MD et al (2014) DPP4 and FAP in glucose and lipid metabolism and liver injury in mice. In: Australian Diabetes Society and Australian Diabetes Educators Association, Melbourne Convention and Exhibition Centre, 27th-29th August 2014, abstract 18

  • Goscinski MA et al (2008) Seprase, dipeptidyl peptidase IV and urokinase-type plasminogen activator expression in dysplasia and invasive squamous cell carcinoma of the esophagus. A study of 229 cases from Anyang Tumor Hospital, Henan Province, China. Oncology 75:49–59

    Article  CAS  PubMed  Google Scholar 

  • Grondin G, Hooper NM, LeBel D (1999) Specific localization of membrane dipeptidase and dipeptidyl peptidase IV in secretion granules of two different pancreatic islet cells. J Histochem Cytochem 47:489–498

    Article  CAS  PubMed  Google Scholar 

  • Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD (2014) Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. PROTEOMICS Clin Appl 8:454–463. doi:10.1002/prca.201300095

    Article  CAS  PubMed  Google Scholar 

  • Hansen L, Deacon CF, Orskov C, Holst JJ (1999) Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140:5356–5363. doi:10.1210/endo.140.11.7143

    CAS  PubMed  Google Scholar 

  • Herman GA et al (2005) Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 78:675–688. doi:10.1016/j.clpt.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  • Hinke SA et al (2000) Dipeptidyl peptidase IV (DPIV/CD26) degradation of glucagon. Characterization of glucagon degradation products and DPIV-resistant analogs. J Biol Chem 275:3827–3834

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Patel HR, Hawkins EJ, Doliba NM, Matschinsky FM, Ahima RS (2007) Insulin secretion is increased in pancreatic islets of neuropeptide Y-deficient mice. Endocrinology 148:5716–5723. doi:10.1210/en.2007-0404

    Article  CAS  PubMed  Google Scholar 

  • Inamoto T et al (2007) Humanized anti-CD26 monoclonal antibody as a treatment for malignant mesothelioma tumors. Clin Cancer Res 13:4191–4200. doi:10.1158/1078-0432.ccr-07-0110

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, Chang L, Pure E (2012) Fibroblast activation protein in remodeling tissues. Curr Mol Med 12:1220–1243

    Article  CAS  PubMed  Google Scholar 

  • Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083. doi:10.1016/S0140-6736(13)62154-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keane FM, Nadvi NA, Yao TW, Gorrell MD (2011) Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-alpha. FEBS J 278:1316–1332

    Article  CAS  PubMed  Google Scholar 

  • Kim D et al (2005) (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 48:141–151. doi:10.1021/jm0493156

    Article  CAS  PubMed  Google Scholar 

  • Koh DS, Cho JH, Chen L (2012) Paracrine interactions within islets of Langerhans. J Mol Neurosci 48:429–440. doi:10.1007/s12031-012-9752-2

    Article  CAS  PubMed  Google Scholar 

  • Lambeir AM, Durinx C, Scharpe S, De Meester I (2003) Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40:209–294

    Article  CAS  PubMed  Google Scholar 

  • Lichnovsky V, Lojda Z, Bocek M (1991) Distribution of the activity of some peptidases in the pancreas of human embryo. Acta Univ Palacki Olomuc Fac Med 131:137–143

    CAS  PubMed  Google Scholar 

  • Liu Z, Stanojevic V, Avadhani S, Yano T, Habener JF (2011) Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival. Diabetologia 54:2067–2076. doi:10.1007/s00125-011-2181-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lojda Z (1981) Proteinases in pathology. Usefulness of histochemical methods. J Histochem Cytochem 29:481–493

    Article  CAS  PubMed  Google Scholar 

  • Lund A, Knop FK, Vilsboll T (2014) Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes: differences and similarities. Eur J Intern Med 25:407–414. doi:10.1016/j.ejim.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  • Lyssenko V et al (2011) Pleiotropic effects of GIP on islet function involve osteopontin. Diabetes 60:2424–2433. doi:10.2337/db10-1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchetti P et al (2012) A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55:3262–3272. doi:10.1007/s00125-012-2716-9

    Article  CAS  PubMed  Google Scholar 

  • Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 85:9–24

    Article  CAS  PubMed  Google Scholar 

  • Mentzel S, Dijkman HB, Van Son JP, Koene RA, Assmann KJ (1996) Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem 44:445–461

    Article  CAS  PubMed  Google Scholar 

  • Omar BA, Liehua L, Yamada Y, Seino Y, Marchetti P, Ahren B (2014) Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. Diabetologia 57:1876–1883. doi:10.1007/s00125-014-3299-4

    Article  CAS  PubMed  Google Scholar 

  • Persson K, Pacini G, Sundler F, Ahren B (2002) Islet function phenotype in gastrin-releasing peptide receptor gene-deficient mice. Endocrinology 143:3717–3726. doi:10.1210/en.2002-220371

    Article  CAS  PubMed  Google Scholar 

  • Pospisilik JA et al (2001) Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul Pept 96:133–141

    Article  CAS  PubMed  Google Scholar 

  • Poulsen MD, Hansen GH, Dabelsteen E, Hoyer PE, Noren O, Sjostrom H (1993) Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells. J Histochem Cytochem 41:81–88

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO, Caicedo A (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54. doi:10.1016/j.cmet.2011.05.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sam AH et al (2012) Selective ablation of peptide YY cells in adult mice reveals their role in beta cell survival. Gastroenterology 143:459–468. doi:10.1053/j.gastro.2012.04.047

    Article  CAS  PubMed  Google Scholar 

  • Sedo A, Malik R (2001) Dipeptidyl peptidase IV-like molecules: homologous proteins or homologous activities? Biochim Biophys Acta 1550:107–116

    Article  CAS  PubMed  Google Scholar 

  • Vanhoof G, Goossens F, De Meester I, Hendriks D, Scharpe S (1995) Proline motifs in peptides and their biological processing. FASEB J 9:736–744

    CAS  PubMed  Google Scholar 

  • Waget A et al (2011) Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152:3018–3029. doi:10.1210/en.2011-0286

    Article  PubMed  Google Scholar 

  • Weir GC, Mojsov S, Hendrick GK, Habener JF (1989) Glucagonlike peptide I (7-37) actions on endocrine pancreas. Diabetes 38:338–342

    Article  CAS  PubMed  Google Scholar 

  • Wesley UV, Albino AP, Tiwari S, Houghton AN (1999) A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 190:311–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wesley UV, Tiwari S, Houghton AN (2004) Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int J Cancer 109:855–866

    Article  CAS  PubMed  Google Scholar 

  • Winzell MS, Ahren B (2007) Role of VIP and PACAP in islet function. Peptides 28:1805–1813. doi:10.1016/j.peptides.2007.04.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the Internal Grant Agency of the Ministry of Health of the Czech Republic IGA NT 14254-3/2013, PRVOUK-P27/LF1/1 and UNCE 204013.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petr Busek or Aleksi Sedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busek, P., Hrabal, P., Fric, P. et al. Co-expression of the homologous proteases fibroblast activation protein and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem Cell Biol 143, 497–504 (2015). https://doi.org/10.1007/s00418-014-1292-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1292-0

Keywords

Navigation