Skip to main content
Log in

Hair follicle morphogenesis and epidermal homeostasis in we/we wal/wal mice with postnatal alopecia

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mice with skin and hair follicle (HF) defects are common models of human skin disorders. A mutant strain with the we/we wal/wal genotype develops alopecia. We found the hair shaft structure in the pelage of mutant mice to have significant defects. Although these mice lose their hair at 21 days, a label-retaining cell population persists in HFs until at least day 54. Depilation-induced anagen was accomplished in we/we wal/wal mutants but the resulting hair shafts were short and extremely deformed. Serious abnormalities in epidermis stratification and HF morphogenesis exist in we/we wal/wal homozygous E18.5 embryos. There were significantly fewer HF primordia in this mutant compared with wild type. We discovered specific structures, identified as invalid placodes, positive for ectodysplasin A1 receptor, nuclear β-catenin, and LEF1, which failed to invaginate, produced a double basal-like layer of epidermal cells, and lacked cylindrical keratinocytes. Specification of dermal papillae (DP) was impaired, and the papillary dermis expressed alkaline phosphatase and LEF1. We also detected DP-like groups of intensively stained cells in the absence of visible signs of folliculogenesis in the epidermis. We showed differentiation disturbances in the mutant embryonic E18.5 epidermis and HFs: The cornified layer was absent, the width of the spinous layer was reduced, and HFs lacked LEF1-positive precortex cells. In this study, we used a very interesting and useful mouse model of alopecia. The presence of symptoms of skin disorders in we/we wal/wal murine embryos correlates with the postnatal skin phenotype. This correlation may help to evaluate reasons of alopecia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andl T, Reddy ST, Gaddapara T et al (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643–653

    Article  CAS  PubMed  Google Scholar 

  • Biggs LC, Mikkola ML (2014) Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2014.01.007

    PubMed  Google Scholar 

  • Botchkareva NV, Botchkarev VA, Chen LH et al (1999) A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev Biol 216:135–153

    Article  CAS  PubMed  Google Scholar 

  • Brakebusch C, Grose R, Quondamatteo F et al (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J 19:3990–4003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braun KM, Niemann C, Jensen UB et al (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in whole mounts of mouse epidermis. Development 130:5241–5255

    Article  CAS  PubMed  Google Scholar 

  • Byrne C, Tainsky M, Fuchs E (1994) Programming gene expression in developing epidermis. Development 120:2369–2383

    CAS  PubMed  Google Scholar 

  • Chi W, Wu E, Morgan BA (2013) Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140:1676–1683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  CAS  PubMed  Google Scholar 

  • DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568

    CAS  PubMed  Google Scholar 

  • Driskell RR, Giangreco A, Jensen KB et al (2009) Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136:2815–2823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duverger O, Morasso MI (2009) Epidermal patterning and induction of different hair types during mouse embryonic development. Birth Defects Res C Embryo Today 87:263–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferguson BM, Brockdorff N, Formstone E et al (1997) Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. Hum Mol Genet 6:1589–1594

    Article  CAS  PubMed  Google Scholar 

  • Fessing MY, Sharova TY, Sharov AA et al (2006) Involvement of the Edar signaling in the control of hair follicle involution (catagen). Am J Pathol 169:2075–2084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu J, Hsu W (2013) Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J Invest Dermatol 133:890–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuchs E (2007) Scratching the surface of skin development. Nature 445:834–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garza LA, Yang CC, Zhao T et al (2011) Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest 121:613–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Headon DJ, Overbeek PA (1999) Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat Genet 22:370–374

    Article  CAS  PubMed  Google Scholar 

  • Headon DJ, Emmal SA, Ferguson BM et al (2001) Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 414:913–916

    Article  CAS  PubMed  Google Scholar 

  • Hertle MD, Adams JC, Watt FM (1991) Integrin expression during human epidermal development in vivo and in vitro. Development 112:193–206

    CAS  PubMed  Google Scholar 

  • Hertwig P (1942) Neue Mutationen und Koppelungsgruppen bei der Hausmaus. Z Indukt Abstammungs-Vererbungsl 80:220–246

    Google Scholar 

  • Huelsken J, Vogel R, Erdmann B et al (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545

    Article  CAS  PubMed  Google Scholar 

  • Huh SH, Närhi K, Lindfors PH et al (2013) Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev 27:450–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen UB, Lowell S, Watt FM (1999) The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126:2409–2418

    CAS  PubMed  Google Scholar 

  • John S, Thiebach L, Frie C et al (2012) Epidermal transglutaminase (TGase 3) is required for proper hair development, but not the formation of the epidermal barrier. PLoS ONE 7:e34252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson KR, Lane PW, Cook SA et al (2003) Curly bare (cub), a new mouse mutation on chromosome 11 causing skin and hair abnormalities, and a modifier gene (mcub) on chromosome 5. Genomics 81:6–14

    Article  CAS  PubMed  Google Scholar 

  • Koniukhov BV, Kupriianov SD (1990) The mutant gene wellhaarig disturbs the differentiation of hair follicle cells in the mouse. Ontogenez 21:56–62

    CAS  PubMed  Google Scholar 

  • Koniukhov BV, Malinina NA, Martynov MIu (2004) The we gene is a modifier of the wal gene in mice. Genetika 40:968–974

    CAS  PubMed  Google Scholar 

  • Koster MI, Roop DR (2007) Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol 23:93–113

    Article  CAS  PubMed  Google Scholar 

  • Kulukian A, Fuchs E (2013) Spindle orientation and epidermal morphogenesis. Philos Trans R Soc Lond B Biol Sci 368:20130016

    Article  PubMed Central  PubMed  Google Scholar 

  • Laurikkala J, Pispa J, Jung HS et al (2002) Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development 129:2541–2553

    CAS  PubMed  Google Scholar 

  • Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Driskell RR, Luo M et al (2004) Characterization of Lef-1 promoter segments that facilitate inductive developmental expression in skin. J Invest Dermatol 123:264–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Rovira T, Silva-Vargas V, Watt FM (2005) Different consequences of beta1 integrin deletion in neonatal and adult mouse epidermis reveal a context-dependent role of integrins in regulating proliferation, differentiation, and intercellular communication. J Invest Dermatol 125:1215–1227

    Article  PubMed  Google Scholar 

  • Luetteke NC, Qiu TH, Peiffer RL et al (1993) TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73:263–278

    Article  CAS  PubMed  Google Scholar 

  • Luetteke NC, Phillips HK, Qiu TH et al (1994) The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 8:399–413

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu J, Wu T et al (2003) ‘Cyclic alopecia’ in Msx2 mutants: defects in hair cycling and hair shaft differentiation. Development 130:379–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martynova MIu, Isaev DA, Koniukhov BV (2002) Effects of the mutant gene wellhaarig in chimeric mice. Genetika 38:1511–1517

    PubMed  Google Scholar 

  • Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118:216–225

    Article  CAS  PubMed  Google Scholar 

  • Morris RJ, Liu Y, Marles L et al (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417

    Article  CAS  PubMed  Google Scholar 

  • Mou C, Jackson B, Schneider P et al (2006) Generation of the primary hair follicle pattern. Proc Natl Acad Sci USA 103:9075–9080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller-Rover S, Handjiski B, van der Veen C et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117:3–15

    Article  CAS  PubMed  Google Scholar 

  • Mustonen T, Ilmonen M, Pummila M et al (2004) Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131:4907–4919

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Sundberg JP, Paus R (2001) Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: annotated tables. Exp Dermatol 10:369–390

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Schneider MR, Schmidt-Ullrich R et al (2013) Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update. J Dermatol Sci 69:6–29

    Article  CAS  PubMed  Google Scholar 

  • Nesterova AP, Nizamutdinov II, Koniukhov BV (2012) Interaction of mutant genes Fgf5(go-Y), we, and wal changes the duration of hair growth cycles in mice. Ontogenez 43:60–65

    CAS  PubMed  Google Scholar 

  • Paus R, Müller-Röver S, Van Der Veen C et al (1999) A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 113:523–532

    Article  CAS  PubMed  Google Scholar 

  • Poulson ND, Lechler T (2010) Robust control of mitotic spindle orientation in the developing epidermis. J Cell Biol 191:915–922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pummila M, Fliniaux I, Jaatinen R et al (2007) Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 134:117–125

    Article  CAS  PubMed  Google Scholar 

  • Raghavan S, Bauer C, Mundschau G et al (2000) Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol 150:1149–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richardson GD, Bazzi H, Fantauzzo KA et al (2009) KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development 136:2153–2164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rippa A, Leonova O, Popenko V et al (2014) Early stages of we/we wal/wal mouse hair morphogenesis: light and fluorescent microscopy of the whole-mount epidermis. BioMed Res Int. doi:10.1155/2014/856978

    PubMed Central  PubMed  Google Scholar 

  • Schlake T (2007) Determination of hair structure and shape. Semin Cell Dev Biol 18:267–273

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Ullrich R, Aebischer T, Hulsken J et al (2001) Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices. Development 128:3843–3853

    CAS  PubMed  Google Scholar 

  • Schmidt-Ullrich R, Tobin DJ, Lenhard D et al (2006) NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 133:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Sorokina JD, Blandova ZK (1985) Waved alopecia. Mouse News Lett 73:23

    Google Scholar 

  • Srivastava AK, Pispa J, Hartung AJ et al (1997) The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc Natl Acad Sci USA 94:13069–13074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terskikh VV, Vasiliev AV, Vorotelyak EA (2012) Label retaining cells and cutaneous stem cells. Stem Cell Rev 8:414–425

    Article  PubMed  Google Scholar 

  • Tong X, Coulombe PA (2003) Mouse models of alopecia: identifying structural genes that are baldly needed. Trends Mol Med 9:79–84

    Article  CAS  PubMed  Google Scholar 

  • Yi R, O’Carroll D, Pasolli HA et al (2006) Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38:356–362

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Andl T, Yang SH et al (2008) Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135:2161–2172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Tomann P, Andl T et al (2009) Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell 17:49–61

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Pasolli HA, Fuchs E (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci USA 108:2270–2275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou P, Byrne C, Jacobs J et al (1995) Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev 9:700–7013

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have declared no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Vorotelyak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rippa, A., Terskikh, V., Nesterova, A. et al. Hair follicle morphogenesis and epidermal homeostasis in we/we wal/wal mice with postnatal alopecia. Histochem Cell Biol 143, 481–496 (2015). https://doi.org/10.1007/s00418-014-1291-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1291-1

Keywords

Navigation