Skip to main content
Log in

Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Doublecortin (DCX) is predominantly expressed in neuronal precursor cells and young immature neurons of the developing and adult brain, where it is involved in neuronal differentiation, migration and plasticity. Moreover, its expression pattern reflects neurogenesis, and transgenic DCX promoter-driven reporter models have been previously used to investigate adult neurogenesis. In this study, we characterize dsRed2 reporter protein-expressing cells in the adult retina of the transgenic DCX promoter-dsRed2 rat model, with the aim to identify cells with putative neurogenic activity. Additionally, we confirmed the expression of the dsRed2 protein in DCX-expressing cells in the adult hippocampal dentate gyrus. Adult DCX-dsRed2 rat retinas were analyzed by immunohistochemistry for expression of DCX, NF200, Brn3a, Sox2, NeuN, calbindin, calretinin, PKC-a, Otx2, ChAT, PSA-NCAM and the glial markers GFAP and CRALBP, followed by confocal laser-scanning microscopy. In addition, brain sections of transgenic rats were analyzed for dsRed2 expression and co-localization with DCX, NeuN, GFAP and Sox2 in the cortex and dentate gyrus. Endogenous DCX expression in the adult retina was confined to horizontal cells, and these cells co-expressed the DCX promoter-driven dsRed2 reporter protein. In addition, we encountered dsRed2 expression in various other cell types in the retina: retinal ganglion cells (RGCs), a subpopulation of amacrine cells, a minority of bipolar cells and in perivascular cells. Since also RGCs expressed dsRed2, the DCX-dsRed2 rat model might offer a useful tool to study RGCs in vivo under various conditions. Müller glial cells, which have previously been identified as cells with stem cell features and with neurogenic potential, did express neither endogenous DCX nor the dsRed2 reporter. However, and surprisingly, we identified a perivascular glial cell type expressing the dsRed2 reporter, enmeshed with the glia/stem cell marker GFAP and colocalizing with the neural stem cell marker Sox2. These findings suggest the so far undiscovered existence of perivascular associated cell with neural stem cell-like properties in the adult retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DCX:

Doublecortin

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

GCL:

Ganglion cell layer

RGCs:

Retinal ganglion cells

References

  • Baas D, Bumsted KM, Martinez JA, Vaccarino FM, Wikler KC, Barnstable CJ (2000) The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina. Brain Res Mol Brain Res 78:26–37

    Article  CAS  PubMed  Google Scholar 

  • Badea TC, Cahill H, Ecker J, Hattar S, Nathans J (2009) Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61:852–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartsch U, Kirchhoff F, Schachner M (1990) Highly sialylated N-CAM is expressed in adult mouse optic nerve and retina. J Neurocytol 19:550–565

    Article  CAS  PubMed  Google Scholar 

  • Bastianelli E, Takamatsu K, Okazaki K, Hidaka H, Pochet R (1995) Hippocalcin in rat retina. Comparison with calbindin-D28 k, calretinin and neurocalcin. Exp Eye Res 60:257–266

    Article  CAS  PubMed  Google Scholar 

  • Beby F, Lamonerie T (2013) The homeobox gene Otx2 in development and disease. Exp Eye Res 111:9–16

    Article  CAS  PubMed  Google Scholar 

  • Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benninghoff DD (2004) Anatomie—makroskopische anatomie, histologie, embryologie, zellbiologie. Elsevier Urban Fisch 2:690–691

    Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bunt-Milam AH, Saari JC (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol 97:703–712

    Article  CAS  PubMed  Google Scholar 

  • Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31:676–684

    Article  CAS  PubMed  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  • Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006) Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci 24:1535–1545

    Article  PubMed  Google Scholar 

  • Couillard-Despres S, Finkl R, Winner B, Ploetz S, Wiedermann D, Aigner R, Bogdahn U, Winkler J, Hoehn M, Aigner L (2008) In vivo optical imaging of neurogenesis: watching new neurons in the intact brain. Mol Imaging 7:28–34

    CAS  PubMed  Google Scholar 

  • Coulombre JL, Coulombre AJ (1965) Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol 12:79–92

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  CAS  PubMed  Google Scholar 

  • Drager UC (1983) Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303:169–172

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt M, Bogdahn U, Aigner L (2005) Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin. Brain Res 1040:98–111

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  CAS  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252

    Article  CAS  PubMed  Google Scholar 

  • Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, Ment LR, Vaccarino FM (2006) Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci 26:8609–8621

    Article  CAS  PubMed  Google Scholar 

  • Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V (2011) Adult human Muller glia cells are a highly efficient source of rod photoreceptors. Stem Cells 29:344–356

    Article  CAS  PubMed  Google Scholar 

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Climent MA, Castillo-Gomez E, Varea E, Guirado R, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18:2229–2240

    Article  PubMed  Google Scholar 

  • Gomez-Climent MA, Guirado R, Castillo-Gomez E, Varea E, Gutierrez-Mecinas M, Gilabert-Juan J, Garcia-Mompo C, Vidueira S, Sanchez-Mataredona D, Hernandez S, Blasco-Ibanez JM, Crespo C, Rutishauser U, Schachner M, Nacher J (2010) The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed in a subpopulation of mature cortical interneurons characterized by reduced structural features and connectivity. Cereb Cortex 21:1028–1041

    Article  PubMed  Google Scholar 

  • Hamano K, Kiyama H, Emson PC, Manabe R, Nakauchi M, Tohyama M (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J Comp Neurol 302:417–424

    Article  CAS  PubMed  Google Scholar 

  • Karl MO, Reh TA (2010) Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 16:193–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karl MO, Reh TA (2012) Studying the generation of regenerated retinal neuron from Muller glia in the mouse eye. Methods Mol Biol 884:213–227

    Article  CAS  PubMed  Google Scholar 

  • Karl C, Couillard-Despres S, Prang P, Munding M, Kilb W, Brigadski T, Plotz S, Mages W, Luhmann H, Winkler J, Bogdahn U, Aigner L (2005) Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 92:264–282

    Article  CAS  PubMed  Google Scholar 

  • Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 105:19508–19513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koike C, Nishida A, Ueno S, Saito H, Sanuki R, Sato S, Furukawa A, Aizawa S, Matsuo I, Suzuki N, Kondo M, Furukawa T (2007) Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol 27:8318–8329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolb H, Linberg KA, Fisher SK (1992) Neurons of the human retina: a Golgi study. J Comp Neurol 318:147–187

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Zhang L, Dekorver L (1993) Differential staining of neurons in the human retina with antibodies to protein kinase C isozymes. Vis Neurosci 10:341–351

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Zhang L, Dekorver L, Cuenca N (2002) A new look at calretinin-immunoreactive amacrine cell types in the monkey retina. J Comp Neurol 453:168–184

    Article  PubMed  Google Scholar 

  • Kondo H, Kuramoto H, Wainer BH, Yanaihara N (1985) Discrete distribution of cholinergic and vasoactive intestinal polypeptidergic amacrine cells in the rat retina. Neurosci Lett 54:213–218

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Kim IB, Lee E, Kwon SO, Oh SJ, Chun MH (2003) Differential expression and cellular localization of doublecortin in the developing rat retina. Eur J Neurosci 17:1542–1548

    Article  PubMed  Google Scholar 

  • Lin YP, Ouchi Y, Satoh S, Watanabe S (2009) Sox2 plays a role in the induction of amacrine and Muller glial cells in mouse retinal progenitor cells. Invest Ophthalmol Vis Sci 50:68–74

    Article  PubMed  Google Scholar 

  • Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19:1028–1041

    Article  PubMed  Google Scholar 

  • MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20:971–982

    Article  CAS  PubMed  Google Scholar 

  • Mariani AP (1990) Amacrine cells of the rhesus monkey retina. J Comp Neurol 301:382–400

    Article  CAS  PubMed  Google Scholar 

  • Mojumder DK, Wensel TG, Frishman LJ (2008) Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis 14:1600–1613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  • Murphy JA, Nickerson PE, Clarke DB (2007) Injury to retinal ganglion cell axons increases polysialylated neural cell adhesion molecule (PSA-NCAM) in the adult rodent superior colliculus. Brain Res 1163:21–32

    Article  CAS  PubMed  Google Scholar 

  • Murphy JA, Hartwick AT, Rutishauser U, Clarke DB (2009) Endogenous polysialylated neural cell adhesion molecule enhances the survival of retinal ganglion cells. Invest Ophthalmol Vis Sci 50:861–869

    Article  PubMed  Google Scholar 

  • Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644

    Article  CAS  PubMed  Google Scholar 

  • Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 50:3860–3868

    Article  PubMed  Google Scholar 

  • Nadal-Nicolas FM, Jimenez-Lopez M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Bejar JJ, Vidal-Sanz M, Agudo-Barriuso M (2012) Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats. PLoS ONE 7:e49830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Namba T, Mochizuki H, Onodera M, Mizuno Y, Namiki H, Seki T (2005) The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci 22:1928–1941

    Article  PubMed  Google Scholar 

  • Nityanandam A, Parthasarathy S, Tarabykin V (2012) Postnatal subventricular zone of the neocortex contributes GFAP+ cells to the rostral migratory stream under the control of Sip1. Dev Biol 366:341–356

    Article  CAS  PubMed  Google Scholar 

  • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101:13654–13659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    Article  CAS  PubMed  Google Scholar 

  • Park CM, Hollenberg MJ (1993) Growth factor-induced retinal regeneration in vivo. Int Rev Cytol 146:49–74

    Article  CAS  PubMed  Google Scholar 

  • Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5:1–16

    Article  CAS  PubMed  Google Scholar 

  • Peichl L, Gonzalez-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11:501–517

    Article  CAS  PubMed  Google Scholar 

  • Pevny LH, Nicolis SK (2009) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42:421–424

    Article  PubMed  Google Scholar 

  • Pittack C, Grunwald GB, Reh TA (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124:805–816

    CAS  PubMed  Google Scholar 

  • Raymond ID, Vila A, Huynh UC, Brecha NC (2008) Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis 14:1559–1574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36:206–220

    Article  CAS  PubMed  Google Scholar 

  • Rohrenbeck J, Wassle H, Heizmann CW (1987) Immunocytochemical labelling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neurosci Lett 77:255–260

    Article  CAS  PubMed  Google Scholar 

  • Sakami S, Etter P, Reh TA (2008) Activin signaling limits the competence for retinal regeneration from the pigmented epithelium. Mech Dev 125:106–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawaguchi A, Idate Y, Ide S, Kawano J, Nagaike R, Oinuma T, Suganuma T (1999) Multistratified expression of polysialic acid and its relationship to VAChT-containing neurons in the inner plexiform layer of adult rat retina. J Histochem Cytochem 47:919–928

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer J (1988) Astrocytes in Mammalian Retina. Prog Retin Eye Res 7:209–232

    Article  Google Scholar 

  • Schrodl F, Trost A, Strohmaier C, Bogner B, Runge C, Kaser-Eichberger A, Couillard-Despres S, Aigner L, Reitsamer HA (2013) Rat choroidal pericytes as a target of the autonomic nervous system. Cell Tissue Res 356:1–8

    Article  PubMed  Google Scholar 

  • Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    CAS  PubMed  Google Scholar 

  • Shaw G, Weber K (1984) The intermediate filament complement of the retina: a comparison between different mammalian species. Eur J Cell Biol 33:95–104

    CAS  PubMed  Google Scholar 

  • Surzenko N, Crowl T, Bachleda A, Langer L, Pevny L (2013) SOX2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development 140:1445–1456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T, Chen DF (2008) Alpha-aminoadipate induces progenitor cell properties of Muller glia in adult mice. Invest Ophthalmol Vis Sci 49:1142–1150

    Article  PubMed Central  PubMed  Google Scholar 

  • Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20:1187–1202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel G (2013) How Sox2 maintains neural stem cell identity. Biochem J 450:e1–e2

    Article  CAS  PubMed  Google Scholar 

  • Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Tsuruga H, Murata H, Araie M, Aihara M (2012) A model for the easy assessment of pressure-dependent damage to retinal ganglion cells using cyan fluorescent protein-expressing transgenic mice. Mol Vis 18:2468–2478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2007) PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat 33:202–209

    Article  CAS  PubMed  Google Scholar 

  • Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, Wouda J, van Dam AM, Lucassen PJ, Swaab DF (2007) Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 130:3321–3335

    Article  CAS  PubMed  Google Scholar 

  • Voigt T (1986) Cholinergic amacrine cells in the rat retina. J Comp Neurol 248:19–35

    Article  CAS  PubMed  Google Scholar 

  • von Bohlen Und Halbach O (2007) Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409–420

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi T, Kosaka J, Mori T, Takamori Y, Yamada H (2008) Doublecortin expression continues into adulthood in horizontal cells in the rat retina. Neurosci Lett 442:249–252

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Archibald ML, Stevens K, Baldridge WH, Chauhan BC (2010) Cyan fluorescent protein (CFP) expressing cells in the retina of Thy1-CFP transgenic mice before and after optic nerve injury. Neurosci Lett 468:110–114

    Article  CAS  PubMed  Google Scholar 

  • Wassle H, Grunert U, Chun MH, Boycott BB (1995) The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 361:537–551

    Article  CAS  PubMed  Google Scholar 

  • Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang HK, Sundholm-Peters NL, Goings GE, Walker AS, Hyland K, Szele FG (2004) Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res 76:282–295

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Thornquist SC, Barnstable CJ (1995) In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res 677:300–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Adele Rabensteiner Foundation, Fuchs-Foundation, Lotte Schwarz Endowment for Experimental Ophthalmology and Glaucoma Research, PMU-FFF (R-10/03/016-TRO) and FWF (FWF-P15729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Reitsamer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trost, A., Schroedl, F., Marschallinger, J. et al. Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina. Histochem Cell Biol 142, 601–617 (2014). https://doi.org/10.1007/s00418-014-1259-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1259-1

Keywords

Navigation