Skip to main content

Advertisement

Log in

Coordinate-based co-localization-mediated analysis of arrestin clustering upon stimulation of the C–C chemokine receptor 5 with RANTES/CCL5 analogues

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

G protein-coupled receptor activation and desensitization leads to recruitment of arrestin proteins from cytosolic pools to the cell membrane where they form clusters difficult to characterize due to their small size and further mediate receptor internalization. We quantitatively investigated clustering of arrestin 3 induced by potent anti-HIV analogues of the chemokine RANTES after stimulation of the C–C chemokine receptor 5 using single-molecule localization-based super-resolution microscopy. We determined arrestin 3 cluster sizes and relative fractions of arrestin 3 molecules in each cluster through image-based analysis of the localization data by adapting a method originally developed for co-localization analysis from molecular coordinates. We found that only classical agonists in the set of tested ligands were able to efficiently recruit arrestin 3 to clusters mostly larger than 150 nm in size and compare our results with existing data on arrestin 2 clustering induced by the same chemokine analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aramori I, Zhang J, Ferguson SSG, Bieniasz PD, Cullen BR, Caron MG (1997) Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J 16(15):4606–4616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banterle N, Khanh Huy B, Lemke EA, Beck M (2013) Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 183(3):363–367

    Article  CAS  PubMed  Google Scholar 

  • Bertrand L, Parent S, Caron M, Legault M, Joly E, Angers S, Bouvier M, Brown M, Houle B, Menard L (2002) The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRs). J Recept Signal Transduct Res 22(1–4):533–541

    Article  CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bockenhauer S, Fürstenberg A, Yao XJ, Kobilka BK, Moerner WE (2011) Conformational dynamics of single G protein-coupled receptors in solution. J Phys Chem B 115(45):13328–13338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordes T, Strackharn M, Stahl SW, Summerer W, Steinhauer C, Forthmann C, Puchner EM, Vogelsang J, Gaub HE, Tinnefeld P (2010) Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett 10(2):645–651

    Article  CAS  PubMed  Google Scholar 

  • Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M (2013) Multi-scale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105(1):172–181

    Article  CAS  PubMed  Google Scholar 

  • Escola J-M, Kuenzi G, Gaertner H, Foti M, Hartley O (2010) CC chemokine receptor 5 (CCR5) desensitization—cycling receptors accumulate in the trans-golgi network. J Biol Chem 285(53):41772–41780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fürstenberg A, Heilemann M (2013) Single-molecule localization microscopy—near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 15(36):14919–14930

    Article  PubMed  Google Scholar 

  • Gaertner H, Cerini F, Escola J-M, Kuenzi G, Melotti A, Offord R, Rossitto-Borlat I, Nedellec R, Salkowitz J, Gorochov G, Mosier D, Hartley O (2008a) Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci USA 105(46):17706–17711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaertner H, Lebeau O, Borlat I, Cerini F, Dufour B, Kuenzi G, Melotti A, Fish RJ, Offord R, Springael JY, Parmentier M, Hartley O (2008b) Highly potent HIV inhibition: engineering a key anti-HIV structure from PSC-RANTES into MIP-1 beta/CCL4. Protein Eng Des Sel 21(2):65–72

    Article  CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Luttrell LM (2011) Refining efficacy: exploiting functional selectivity for drug discovery. Adv Pharmacol 62:79–107

    Article  CAS  PubMed  Google Scholar 

  • Hartley O, Gaertner H, Wilken J, Thompson D, Fish R, Ramos A, Pastore C, Dufour B, Cerini F, Melotti A, Heveker N, Picard L, Alizon M, Mosier D, Kent S, Offord R (2004) Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc Natl Acad Sci USA 101(47):16460–16465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908

    Article  CAS  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karim QA, Karim SSA, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, Kharsany ABM, Sibeko S, Mlisana KP, Omar Z, Gengiah TN, Maarschalk S, Arulappan N, Mlotshwa M, Morris L, Taylor D, Grp CT (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329(5996):1168–1174

    Article  Google Scholar 

  • Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12(3):205–216

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3(3):193–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406

    Article  CAS  PubMed  Google Scholar 

  • Kohout TA, Lin FT, Perry SJ, Conner DA, Lefkowitz RJ (2001) Beta-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98(4):1601–1606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhmann SE, Hartley O (2008) Targeting chemokine receptors in HIV: A status report. Annu Rev Pharmacol Toxicol 48:425–461

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta(2)-adrenergic receptor into clathrin-coated pits. J Biol Chem 275(30):23120–23126

    Article  CAS  PubMed  Google Scholar 

  • Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, Mefford M, Piatak M Jr, Lifson JD, Salkowitz JR, Rodriguez B, Blauvelt A, Hartley O (2004) Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306(5695):485–487

    Article  CAS  PubMed  Google Scholar 

  • Lee SF, Vérolet Q, Fürstenberg A (2013) Improved super-resolution microscopy with oxazine fluorophores in heavy water. Angew Chem Int Ed Engl 52(34):8948–8951

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SSG, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin FT, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta(2) adrenergic receptor Src protein kinase complexes. Science 283(5402):655–661

    Article  CAS  PubMed  Google Scholar 

  • Malkusch S, Endesfelder U, Mondry J, Gelleri M, Verveer PJ, Heilemann M (2012) Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem Cell Biol 137(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Malkusch S, Muranyi W, Muller B, Krausslich HG, Heilemann M (2013) Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 139(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Moerner WE (2012) Microscopy beyond the diffraction limit using actively controlled single molecules. J Microsc 246(3):213–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore CAC, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482

    Article  CAS  PubMed  Google Scholar 

  • Mundell SJ, Matharu AL, Kelly E, Benovic JL (2000) Arrestin isoforms dictate differential kinetics of A(2B) adenosine receptor trafficking. Biochemistry 39(42):12828–12836

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuizen RP, Lidke KA, Bates M, Puig DL, Grunwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10:557–562

    Article  CAS  PubMed  Google Scholar 

  • Owen DM, Williamson DJ, Boelen L, Magenau A, Rossy J, Gaus K (2013) Quantitative analysis of three-dimensional fluorescence localization microscopy data. Biophys J 105(2):L05–L07

    Article  CAS  PubMed  Google Scholar 

  • Pierce KL, Lefkowitz RJ (2001) Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2(10):727–733

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10(8):579–590

    Article  CAS  PubMed  Google Scholar 

  • Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584

    Article  CAS  PubMed  Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns. J Roy Statist Soc B 39:172–212

    Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santini F, Gaidarov I, Keen JH (2002) G protein-coupled receptor/arrestin3 modulation of the endocytic machinery. J Cell Biol 156(4):665–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Specht CG, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M, Triller A (2013) Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79(2):308–321

    Article  CAS  PubMed  Google Scholar 

  • Truan Z, Tarancón Díez L, Bönsch C, Malkusch S, Endesfelder U, Munteanu M, Hartley O, Heilemann M, Fürstenberg A (2013) Quantitative morphological analysis of arrestin 2 clustering upon G protein-coupled receptor stimulation by super-resolution microscopy. J Struct Biol 184(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Schüttpelz M, Tscherepanow M, Van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Zidar DA (2011) Endogenous ligand bias by chemokines: implications at the front lines of infection and leukocyte trafficking. Endocr Metab Immune Disord Drug Targets 11(2):120–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jeffrey Benovic (Thomas Jefferson University) for the arrestin 3-GFP plasmid. This work was supported by the Swiss National Science Foundation through Ambizione fellowship PZ00P3_131935 (A.F.) and project number 310030_143789 (O.H.), as well as by Fondation Dormeur (O.H. and A.F.). M.H. acknowledges funding by the Bundesministerium für Bildung und Forschung (Grant Number 0315262) and the German Science Foundation (EXC 115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Fürstenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarancón Díez, L., Bönsch, C., Malkusch, S. et al. Coordinate-based co-localization-mediated analysis of arrestin clustering upon stimulation of the C–C chemokine receptor 5 with RANTES/CCL5 analogues. Histochem Cell Biol 142, 69–77 (2014). https://doi.org/10.1007/s00418-014-1206-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1206-1

Keywords

Navigation