Skip to main content

Advertisement

Log in

Spatial distribution and structural arrangement of a murine cytomegalovirus glycoprotein detected by SPDM localization microscopy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Novel approaches of localization microscopy have opened new insights into the molecular nano-cosmos of cells. We applied a special embodiment called spectral position determination microscopy (SPDM) that has the advantage to run with standard fluorescent dyes or proteins under standard preparation conditions. Pointillist images with a resolution in the order of 10 nm can be obtained by SPDM. Therefore, vector pEYFP-m164, encoding the murine cytomegalovirus glycoprotein gp36.5/m164 fused to enhanced yellow fluorescent protein, was transiently transfected into COS-7 cells. This protein shows exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane. The molecular positions of gp36.5/m164 were visualized and determined by SPDM imaging. From the position point patterns of the protein molecules, their arrangements were quantified by next neighbour distance analyses. Three different structural arrangements were discriminated: (a) a linear distribution along the membrane, (b) a highly structured distribution in the ER, and (c) a homogenous distribution in the cellular cytoplasm. The results indicate that the analysis of next neighbour distances on the nano-scale allows the identification and discrimination of different structural arrangements of molecules within their natural cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung (Contributions to the theory of the microscope and microscopic observation). Archiv f. mikroskopische Anatomie 9:411–468

    Google Scholar 

  • Baddeley D, Cannell MB, Soeller C (2010) Visualization of localization microscopy data. Microsc Microanal 16:64–72

    Article  CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino J, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, von Ketteler A, Lemmer P, Hausmann M, Heermann DW, Cremer C (2010) Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J 99:1358–1367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cremer C, Masters BR (2013) Resolution enhancement techniques in microscopy. Eur Phys J H38:281–344

    Google Scholar 

  • Cremer C, Kaufmann R, Gunkel M, Pres S, Weiland Y, Müller P, Ruckelshausen T, Lemmer P, Geiger F, Degenhard S, Wege C, Lemmermann NA, Holtappels R, Strickfaden H, Hausmann M (2011) Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol J 6:1037–1051

    Article  CAS  PubMed  Google Scholar 

  • Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534

    Article  PubMed  Google Scholar 

  • Duarte MF, Eldar YC (2011) Structured compressed sensing: from theory to applications. IEEE Trans Signal Process 59:4053–4085

    Article  Google Scholar 

  • Ebert S, Podlech J, Gillert-Marien D, Gergely KM, Büttner JK, Fink A, Freitag K, Thomas D, Reddehase MJ, Holtappels R (2012) Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 201:527–539

    Article  PubMed  Google Scholar 

  • Esa A, Edelmann P, Kreth G, Trakhtenbrot L, Amariglio N, Rechavi G, Hausmann M, Cremer C (2000) Three-dimensional spectral precision distance microscopy of chromatin nano-structures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J Microsc 199:96–105

    Article  CAS  PubMed  Google Scholar 

  • Falk M, Hausmann M, Lukášová E, Biswas A, Hildenbrand G, Davídková M, Krasavin E, Kleibl Z, Falková I, Ježková L, Štefančíková L, Ševčík J, Hofer M, Bačíková A, Matula P, Boreyko A, Vachelová J, Michaelidisová A, Kozubek S (2014) Giving OMICS spatiotemporal dimensions by challenging microscopy: from functional networks to structural organization of cell nuclei elucidating mechanisms of complex radiation damage response and chromatin repair—part B (Structuromics). Crit Rev Eukaryot Gene Expr (in press)

  • Fölling J, Bossi M, Bock H, Medda R, Wurm C, Hein B, Jakobs S, Eggeling C, Hell S (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945

    Article  PubMed  Google Scholar 

  • Grüll F, Kirchgessner M, Kaufmann R, Hausmann M, Kebschull U (2011) Accelerating image analysis for localization microscopy with FPGAs. Proceedings of 21st international conference on field programmable logic and applications, Chania, Kreta 1–5

  • Grunzke R, Müller-Pfefferkorn R, Jäkel R, Starek J, Hardt M, Hartmann V, Potthoff J, Hesser J, Kepper K, Hausmann M, Gesing S, Kindermann S (2014) Device-driven metadate management solution for scientific big data use cases. IEEE Proc PDP (in press)

  • Hausmann M, Müller P, Kaufmann R, Cremer C (2013) Entering the nano-cosmos of the cell by means of spatial position determination microscopy (SPDM): implications for medical diagnostics and radiation research. IFMBE Proc 38:93–95

    Article  Google Scholar 

  • Heilemann M, Herten DP, Heintzmann R, Cremer C, Mueller CP, Tinnefeld P, Weston KD, Wolfrum J, Sauer M (2002) High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal Chem 74:3511–3517

    Article  CAS  PubMed  Google Scholar 

  • Hendrix J, Flors C, Dedecker P, Hofkens J, Engelborghs Y (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94:4103–4113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holtappels R, Grzimek NKA, Simon CO, Thomas D, Dreis D, Reddehase MJ (2002a) Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 76:6044–6053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002b) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, Oehrlein-Karpi SA, Hill AB, Reddehase MJ (2008a) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holtappels R, Thomas D, Janda J, Schenk S, Reddehase MJ, Geginat G (2008b) Adoptive CD8 T cell control of pathogens can not be improved by combining protective epitope specificities. J Infect Dis 197:622–629

    Article  PubMed  Google Scholar 

  • Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufmann R (2011) Entwicklung quantitativer Analysemethoden in der Lokalisationsmikroskopie. Inaugural-Dissertation, Faculty of Natural Sciences. University of Heidelberg

  • Kaufmann R, Lemmer P, Gunkel M, Weiland Y, Müller P, Hausmann M, Baddeley D, Amberger R, Cremer C (2009) SPDM - single molecule superresolution of cellular nanostructures. Proc SPIE 7185:71850J1–71850J19

    Article  Google Scholar 

  • Kaufmann R, Müller P, Hildenbrand G, Hausmann M, Cremer C (2011) Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy. J Microsc 242:46–54

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann R, Piontek J, Grüll F, Kirchgessner M, Rossa J, Wolburg H, Blasig IE, Cremer C (2012) Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PLoS One 7:e31128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Urich A, Weiland Y, Reymann J, Müller P, Hausmann M, Cremer C (2008) SPDM—light microscopy with single molecule resolution at the nanoscale. Appl Phys B 93:1–12

    Article  CAS  Google Scholar 

  • Lemmer P, Gunkel M, Weiland Y, Müller P, Baddeley D, Kaufmann R, Urich A, Eipel H, Amberger R, Hausmann M, Cremer C (2009) Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10 nm range. J Microsc 235:163–171

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Schmitt E, Jacob A, Hoheisel J, Kaufmann R, Cremer C, Hausmann M (2010) COMBO-FISH enables high precision localization microscopy as a prerequisite for nanostructure analysis of genome loci. Int J Mol Sci 11:4094–4105

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller P, Weiland Y, Kaufmann R, Gunkel M, Hillebrandt S, Cremer C, Hausmann M (2012) Analysis of fluorescent nanostructures in biological systems by means of spectral position determination microscopy (SPDM). In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology, vol 1. Formatex Research Center Badajoz, Spain, pp 3–12

  • Nauerth M, Weißbrich B, Knall R, Franz T, Dössinger G, Bet J, Paszkiewicz PJ, Pfeifer L, Bunse M, Uckert W, Holtappels R, Gillert-Marien D, Neuenhahn M, Krackhardt A, Reddehase MJ, Riddell SR, Busch DH (2013) TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci Transl Med 5(192):192ra87. doi:10.1126/scitranslmed.3005958

    Article  PubMed Central  PubMed  Google Scholar 

  • Rayleigh L (1896) On the theory of optical images, with special reference to the microscope. Philos Mag 42:167–195

    Article  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44:7085–7094

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann T, Rietdorf J, Girod A, Georget V, Pepperkok R (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett 531:245–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (German Research Council) to C.C., and of the Bundesministerium für Bildung und Forschung (Federal Ministry for Education and Research) to M.H., R.H. was supported by the Deutsche Forschungsgemeinschaft, Collaborative Research Centre (SFB) 490 (TP-E3) and the intramural funding in program IFF-I of the University Medical Center, Mainz, Germany. N.A.L. received intramural funding in the young investigator program MAIFOR of the University Medical Center, Mainz, Germany. The authors thank Udo Birk, IMB, Mainz, for technical contributions in the development of the SPDM instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hausmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, P., Lemmermann, N.A., Kaufmann, R. et al. Spatial distribution and structural arrangement of a murine cytomegalovirus glycoprotein detected by SPDM localization microscopy. Histochem Cell Biol 142, 61–67 (2014). https://doi.org/10.1007/s00418-014-1185-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1185-2

Keywords

Navigation