Skip to main content
Log in

Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Compared to the cytoplasmic F-actin abundance in cells, nuclear F-actin levels are generally quite low. However, nuclear actin is present in certain cell types including oocytes and under certain cellular conditions including stress or serum stimulation. Currently, the architecture and polymerization status of nuclear actin networks has not been analyzed in great detail. In this study, we investigated the architecture and functions of such nuclear actin networks. We generated nuclear actin polymers by overexpression of actin proteins fused to a nuclear localization signal (NLS). Raising nuclear abundance of a NLS wild-type actin, we observed phalloidin- and LifeAct-positive actin bundles forming a nuclear cytoskeletal network consisting of curved F-actin. In contrast, a polymer-stabilizing actin mutant (NLS-G15S-actin) deficient in interacting with the actin-binding protein cofilin generated a nuclear actin network reminiscent of straight stress fiber-like microfilaments in the cytoplasm. We provide a first electron microscopic description of such nuclear actin polymers suggesting bundling of actin filaments. Employing different cell types from various species including neurons, we show that the morphology of and potential to generate nuclear actin are conserved. Finally, we demonstrate that nuclear actin affects cell function including morphology, serum response factor-mediated gene expression, and herpes simplex virus infection. Our data suggest that actin is able to form filamentous structures inside the nucleus, which share architectural and functional similarities with the cytoplasmic F-actin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baarlink C, Wang H, Grosse R (2013) Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340(6134):864–867

    Article  CAS  PubMed  Google Scholar 

  • Belin BJ, Cimini BA, Blackburn EH, Mullins RD (2013) Visualization of actin filaments and monomers in somatic cell nuclei. Mol Biol Cell 24(7):982–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohnsack MT, Stuven T, Kuhn C, Cordes VC, Gorlich D (2006) A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nat Cell Biol 8(3):257–263

    Article  CAS  PubMed  Google Scholar 

  • Clark TG, Merriam RW (1978) Actin in Xenopus oocytes. J Cell Biol 77(2):427–438

    Article  CAS  PubMed  Google Scholar 

  • Couprie M, Bezerra F, Bertrand G (2001) Topological operators for grayscale image processing. J Electron Imaging 10:1003

    Article  Google Scholar 

  • Domazetovska A, Ilkovski B, Cooper ST, Ghoddusi M, Hardeman EC, Minamide LS, Gunning PW, Bamburg JR, North KN (2007) Mechanisms underlying intranuclear rod formation. Brain 130(Pt 12):3275–3284

    Article  PubMed  Google Scholar 

  • Dopie J, Skarp KP, Rajakyla EK, Tanhuanpaa K, Vartiainen MK (2012) Active maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci USA 109(9):E544–E552

    Article  CAS  PubMed  Google Scholar 

  • Gettemans J, Van Impe K, Delanote V, Hubert T, Vandekerckhove J, De Corte V (2005) Nuclear actin-binding proteins as modulators of gene transcription. Traffic 6(10):847–857

    Article  CAS  PubMed  Google Scholar 

  • Hofmann WA (2009) Cell and molecular biology of nuclear actin. Int Rev Cell Mol Biol 273:219–263

    Article  CAS  PubMed  Google Scholar 

  • Hofmann WA, Arduini A, Nicol SM, Camacho CJ, Lessard JL, Fuller-Pace FV, de Lanerolle P (2009) SUMOylation of nuclear actin. J Cell Biol 186(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Hohn K, Sailer M, Wang L, Lorenz M, Schneider ME, Walther P (2011) Preparation of cryofixed cells for improved 3D ultrastructure with scanning transmission electron tomography. Histochem Cell Biol 135(1):1–9

    Article  PubMed  Google Scholar 

  • Jockusch BM, Schoenenberger CA, Stetefeld J, Aebi U (2006) Tracking down the different forms of nuclear actin. Trends Cell Biol 16(8):391–396

    Article  CAS  PubMed  Google Scholar 

  • Lewis AK, Bridgman PC (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J Cell Biol 119(5):1219–1243

    Article  CAS  PubMed  Google Scholar 

  • McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol 172(4):541–552

    Article  CAS  PubMed  Google Scholar 

  • McGough A, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138(4):771–781

    Article  CAS  PubMed  Google Scholar 

  • Michelot A, Berro J, Guerin C, Boujemaa-Paterski R, Staiger CJ, Martiel JL, Blanchoin L (2007) Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr Biol 17(10):825–833

    Article  CAS  PubMed  Google Scholar 

  • Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Gurdon JB (2011) Nuclear actin and transcriptional activation. Commun Integr Biol 4(5):582–583

    CAS  PubMed  Google Scholar 

  • Munsie LN, Desmond CR, Truant R (2012) Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress. J Cell Sci 125(Pt 17):3977–3988

    Article  CAS  PubMed  Google Scholar 

  • Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci 9(2):136–147

    Article  CAS  PubMed  Google Scholar 

  • Pederson T (2008) As functional nuclear actin comes into view, is it globular, filamentous, or both? J Cell Biol 180(6):1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Pendleton A, Pope B, Weeds A, Koffer A (2003) Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J Biol Chem 278(16):14394–14400

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035

    Article  CAS  PubMed  Google Scholar 

  • Posern G, Sotiropoulos A, Treisman R (2002) Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell 13(12):4167–4178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Posern G, Miralles F, Guettler S, Treisman R (2004) Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J 23(20):3973–3983

    Article  CAS  PubMed  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts KL, Baines JD (2011) Actin in herpesvirus infection. Viruses 3(4):336–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roth J, Binder M (1978) Coloidal gold, ferritin and peroxidase as markers for electron microscopic double labeling lectin techniques. J Histochem Cytochem 26(3):163–169

    Article  CAS  PubMed  Google Scholar 

  • Samwer M, Dehne HJ, Spira F, Kollmar M, Gerlich DW, Urlaub H, Gorlich D (2013) The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis. EMBO J 32(13):1886–1902

    Article  CAS  PubMed  Google Scholar 

  • Spettl A, Linden M, Manke I, Schmidt V (2012) Structural 3D characterization of silica monoliths: extraction of rod networks. In: Puente Leon F, Heizmann M (eds) Forum Bildverarbeitung 2012. KIT Scientific Publishing, Karlsruhe, pp 107–118

    Google Scholar 

  • Steketee M, Balazovich K, Tosney KW (2001) Filopodial initiation and a novel filament-organizing center, the focal ring. Mol Biol Cell 12(8):2378–2395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stern S, Debre E, Stritt C, Berger J, Posern G, Knoll B (2009) A nuclear actin function regulates neuronal motility by serum response factor-dependent gene transcription. J Neurosci 29(14):4512–4518

    Article  CAS  PubMed  Google Scholar 

  • Stuven T, Hartmann E, Gorlich D (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22(21):5928–5940

    Article  PubMed  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421

    Article  CAS  PubMed  Google Scholar 

  • Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752

    Article  CAS  PubMed  Google Scholar 

  • Vartiainen MK, Huet G, Skarp KP (2012) Nuclear actin levels as an important transcriptional switch. Transcription 3(5):226–230

    Google Scholar 

  • Walther P (2008) High-resolution cryo-SEM allows direct identification of F-actin at the inner nuclear membrane of Xenopus oocytes by virtue of its structural features. J Microsc 232(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 14(8):461–469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

B.K. is supported by the DFG (Deutsche Forschungsgemeinschaft), Schram, Gottschalk, and Gemeinnützige Hertie foundation. G.P. and J.W. are supported by the DFG (priority program 1464). The authors declare no conflict of interest.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Knöll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 2254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokai, E., Beck, H., Weissbach, J. et al. Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins. Histochem Cell Biol 141, 123–135 (2014). https://doi.org/10.1007/s00418-013-1151-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1151-4

Keywords

Navigation