Skip to main content
Log in

Components of the CtBP1/BARS-dependent fission machinery

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The brefeldin A ADP-ribosylated substrate, a member of the C-terminal-binding protein family that is referred to as CtBP1/BARS, is a dual-function protein that acts as a transcriptional co-repressor in the nucleus and as an inducer of membrane fission in the cytoplasm. In this review, we first discuss the mechanisms that enable CtBP1/BARS to shift between the nuclear transcriptional co-repressor and the cytosolic fission-inducing activities. Then, we focus on the role of CtBP1/BARS in membrane fission. CtBP1/BARS controls several fission events including macropinocytosis, fluid-phase endocytosis, COPI-coated vesicle formation, basolaterally directed post-Golgi carrier formation, and Golgi partitioning in mitosis. We report on recent advances in our understanding of the CtBP1/BARS membrane fission machineries that operate at the trans-side and at the cis-side of the Golgi complex. Specifically, we discuss how these machineries are assembled and regulated, and how they operate in the formation of the basolaterally directed post-Golgi carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitken A (1996) 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol 6(9):341–347

    PubMed  CAS  Google Scholar 

  • Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16(3):162–172. doi:10.1016/j.semcancer.2006.03.005

    PubMed  CAS  Google Scholar 

  • Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K, Wandeler E, Mercer J, Hemmi S, Greber UF (2008) Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 27(7):956–969. doi:10.1038/emboj.2008.38

    PubMed  CAS  Google Scholar 

  • Andoh T, Kato T Jr, Matsui Y, Toh-e A (1998) Phosphoinositide-specific phospholipase C forms a complex with 14-3-3 proteins and is involved in expression of UV resistance in fission yeast. Mol Gen Gen MGG 258(1–2):139–147

    CAS  Google Scholar 

  • Barnes CJ, Vadlamudi RK, Mishra SK, Jacobson RH, Li F, Kumar R (2003) Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Biol 10(8):622–628. doi:10.1038/nsb957

    PubMed  CAS  Google Scholar 

  • Baron CL, Malhotra V (2002) Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295(5553):325–328. doi:10.1126/science.1066759

    PubMed  CAS  Google Scholar 

  • Beck R, Sun Z, Adolf F, Rutz C, Bassler J, Wild K, Sinning I, Hurt E, Brugger B, Bethune J, Wieland F (2008) Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proc Natl Acad Sci USA 105(33):11731–11736. doi:10.1073/pnas.0805182105

    PubMed  CAS  Google Scholar 

  • Beck R, Prinz S, Diestelkotter-Bachert P, Rohling S, Adolf F, Hoehner K, Welsch S, Ronchi P, Brugger B, Briggs JA, Wieland F (2011) Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission. J Cell Biol 194(5):765–777. doi:10.1083/jcb.201011027

    PubMed  CAS  Google Scholar 

  • Bonazzi M, Spano S, Turacchio G, Cericola C, Valente C, Colanzi A, Kweon HS, Hsu VW, Polishchuck EV, Polishchuck RS, Sallese M, Pulvirenti T, Corda D, Luini A (2005) CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 7(6):570–580. doi:10.1038/ncb1260

    PubMed  CAS  Google Scholar 

  • Bossard C, Bresson D, Polishchuk RS, Malhotra V (2007) Dimeric PKD regulates membrane fission to form transport carriers at the TGN. J Cell Biol 179(6):1123–1131. doi:10.1083/jcb.200703166

    PubMed  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12(2):469–478

    PubMed  CAS  Google Scholar 

  • Braselmann S, McCormick F (1995) Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J 14(19):4839–4848

    PubMed  CAS  Google Scholar 

  • Bruns JR, Ellis MA, Jeromin A, Weisz OA (2002) Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J Biol Chem 277(3):2012–2018. doi:10.1074/jbc.M108571200

    PubMed  CAS  Google Scholar 

  • Brzeska H, Knaus UG, Wang ZY, Bokoch GM, Korn ED (1997) p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I. Proc Natl Acad Sci USA 94(4):1092–1095

    PubMed  CAS  Google Scholar 

  • Buss F, Kendrick-Jones J, Lionne C, Knight AE, Cote GP, Paul Luzio J (1998) The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Cell Biol 143(6):1535–1545

    PubMed  CAS  Google Scholar 

  • Bustad HJ, Underhaug J, Halskau O Jr, Martinez A (2011) The binding of 14-3-3 gamma to membranes studied by intrinsic fluorescence spectroscopy. FEBS Lett 585(8):1163–1168. doi:10.1016/j.febslet.2011.03.027

    PubMed  CAS  Google Scholar 

  • Campelo F, Malhotra V (2012) Membrane fission: the biogenesis of transport carriers. Annu Rev Biochem 81:407–427. doi:10.1146/annurev-biochem-051710-094912

    PubMed  CAS  Google Scholar 

  • Cao X, Coskun U, Rossle M, Buschhorn SB, Grzybek M, Dafforn TR, Lenoir M, Overduin M, Simons K (2009) Golgi protein FAPP2 tubulates membranes. Proc Natl Acad Sci USA 106(50):21121–21125. doi:10.1073/pnas.0911789106

    PubMed  CAS  Google Scholar 

  • Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009) Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9(11):2967–2985. doi:10.1002/pmic.200800445

    PubMed  CAS  Google Scholar 

  • Chen YG, Siddhanta A, Austin CD, Hammond SM, Sung TC, Frohman MA, Morris AJ, Shields D (1997) Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. J Cell Biol 138(3):495–504

    PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207. doi:10.1146/annurev.biochem.72.121801.161504

    PubMed  CAS  Google Scholar 

  • Chinnadurai G (2003) CtBP family proteins: more than transcriptional corepressors. BioEssays News Rev Mol Cell Dev Biol 25(1):9–12. doi:10.1002/bies.10212

    CAS  Google Scholar 

  • Chinnadurai G (2009) The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69(3):731–734. doi:10.1158/0008-5472.CAN-08-3349

    PubMed  CAS  Google Scholar 

  • Colanzi A, Corda D (2007) Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol 19(4):386–393. doi:10.1016/j.ceb.2007.06.002

    PubMed  CAS  Google Scholar 

  • Colanzi A, Hidalgo Carcedo C, Persico A, Cericola C, Turacchio G, Bonazzi M, Luini A, Corda D (2007) The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J 26(10):2465–76. doi:10.1038/sj.emboj.7601686

    PubMed  CAS  Google Scholar 

  • Corda D, Hidalgo Carcedo C, Bonazzi M, Luini A, Spano S (2002) Molecular aspects of membrane fission in the secretory pathway. Cell Mol Life Sci CMLS 59(11):1819–1832

    CAS  Google Scholar 

  • Corda D, Colanzi A, Luini A (2006) The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol 16(3):167–173. doi:10.1016/j.tcb.2006.01.007

    PubMed  CAS  Google Scholar 

  • Criqui-Filipe P, Ducret C, Maira SM, Wasylyk B (1999) Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J 18(12):3392–3403. doi:10.1093/emboj/18.12.3392

    PubMed  CAS  Google Scholar 

  • Dammer EB, Sewer MB (2008) Phosphorylation of CtBP1 by cAMP-dependent protein kinase modulates induction of CYP17 by stimulating partnering of CtBP1 and 2. J Biol Chem 283(11):6925–6934. doi:10.1074/jbc.M708432200

    PubMed  CAS  Google Scholar 

  • D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449(7158):62–67. doi:10.1038/nature06097

    PubMed  Google Scholar 

  • De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4):273–284. doi:10.1038/nrm2378

    PubMed  Google Scholar 

  • De Matteis MA, Di Girolamo M, Colanzi A, Pallas M, Di Tullio G, McDonald LJ, Moss J, Santini G, Bannykh S, Corda D et al (1994) Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc Natl Acad Sci USA 91(3):1114–1118

    PubMed  Google Scholar 

  • Deltour S, Pinte S, Guerardel C, Wasylyk B, Leprince D (2002) The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol 22(13):4890–4901

    PubMed  CAS  Google Scholar 

  • Demmel L, Beck M, Klose C, Schlaitz AL, Gloor Y, Hsu PP, Havlis J, Shevchenko A, Krause E, Kalaidzidis Y, Walch-Solimena C (2008) Nucleocytoplasmic shuttling of the Golgi phosphatidylinositol 4-kinase Pik1 is regulated by 14-3-3 proteins and coordinates Golgi function with cell growth. Mol Biol Cell 19(3):1046–1061. doi:10.1091/mbc.E07-02-0134

    PubMed  CAS  Google Scholar 

  • Diaz Anel AM (2007) Phospholipase C beta3 is a key component in the Gbetagamma/PKCeta/PKD-mediated regulation of trans-Golgi network to plasma membrane transport. Biochem J 406(1):157–165. doi:10.1042/BJ20070359

    PubMed  CAS  Google Scholar 

  • Diaz Anel AM, Malhotra V (2005) PKCeta is required for beta1gamma2/beta3gamma2- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus. J Cell Biol 169(1):83–91. doi:10.1083/jcb.200412089

    PubMed  Google Scholar 

  • Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Meerloo T, Farquhar MG, Zhou H, Field SJ (2009) GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139(2):337–351. doi:10.1016/j.cell.2009.07.052

    PubMed  CAS  Google Scholar 

  • Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12(6):362–375. doi:10.1038/nrm3117

    PubMed  CAS  Google Scholar 

  • Even-Faitelson L, Rosenberg M, Ravid S (2005) PAK1 regulates myosin II-B phosphorylation, filament assembly, localization and cell chemotaxis. Cell Signal 17(9):1137–1148. doi:10.1016/j.cellsig.2004.12.015

    PubMed  CAS  Google Scholar 

  • Fjeld CC, Birdsong WT, Goodman RH (2003) Differential binding of NAD + and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 100(16):9202–9207. doi:10.1073/pnas.1633591100

    PubMed  CAS  Google Scholar 

  • Folkers U, Kirik V, Schobinger U, Falk S, Krishnakumar S, Pollock MA, Oppenheimer DG, Day I, Reddy AS, Jurgens G, Hulskamp M (2002) The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO J 21(6):1280–1288. doi:10.1093/emboj/21.6.1280

    PubMed  CAS  Google Scholar 

  • Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ, Evans PR, McMahon HT (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419(6905):361–366. doi:10.1038/nature01020

    PubMed  CAS  Google Scholar 

  • Gachomo EW, Jimenez-Lopez JC, Smith SR, Cooksey AB, Oghoghomeh OM, Johnson N, Baba-Moussa L, Kotchoni SO (2013) The cell morphogenesis ANGUSTIFOLIA (AN) gene, a plant homolog of CtBP/BARS, is involved in abiotic and biotic stress response in higher plants. BMC Plant Biol 13:79. doi:10.1186/1471-2229-13-79

    PubMed  CAS  Google Scholar 

  • Gallop JL, Butler PJ, McMahon HT (2005) Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438(7068):675–678. doi:10.1038/nature04136

    PubMed  CAS  Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1(5):280–287. doi:10.1038/12993

    PubMed  CAS  Google Scholar 

  • Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6(5):393–404. doi:10.1038/ncb1119

    PubMed  CAS  Google Scholar 

  • Haga Y, Miwa N, Jahangeer S, Okada T, Nakamura S (2009) CtBP1/BARS is an activator of phospholipase D1 necessary for agonist-induced macropinocytosis. EMBO J 28(9):1197–1207. doi:10.1038/emboj.2009.78

    PubMed  CAS  Google Scholar 

  • Hasegawa J, Tsujita K, Takenawa T, Itoh T (2012) ARAP1 regulates the ring size of circular dorsal ruffles through Arf1 and Arf5. Mol Biol Cell 23(13):2481–2489. doi:10.1091/mbc.E12-01-0017

    PubMed  CAS  Google Scholar 

  • Hausser A, Storz P, Link G, Stoll H, Liu YC, Altman A, Pfizenmaier K, Johannes FJ (1999) Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins. J Biol Chem 274(14):9258–9264

    PubMed  CAS  Google Scholar 

  • Hausser A, Link G, Hoene M, Russo C, Selchow O, Pfizenmaier K (2006) Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity. J Cell Sci 119(Pt 17):3613–3621. doi:10.1242/jcs.03104

    PubMed  CAS  Google Scholar 

  • Haynes LP, Thomas GM, Burgoyne RD (2005) Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase beta and trans-Golgi network-plasma membrane traffic. J Biol Chem 280(7):6047–6054. doi:10.1074/jbc.M413090200

    PubMed  CAS  Google Scholar 

  • Hidalgo Carcedo C, Bonazzi M, Spano S, Turacchio G, Colanzi A, Luini A, Corda D (2004) Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 305(5680):93–96. doi:10.1126/science.1097775

    PubMed  Google Scholar 

  • Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22(15):5296–5307

    PubMed  CAS  Google Scholar 

  • Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519. doi:10.1146/annurev.cellbio.16.1.483

    PubMed  CAS  Google Scholar 

  • Jamora C, Yamanouye N, Van Lint J, Laudenslager J, Vandenheede JR, Faulkner DJ, Malhotra V (1999) Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98(1):59–68. doi:10.1016/S0092-8674(00)80606-6

    PubMed  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24(1):8–11

    PubMed  CAS  Google Scholar 

  • Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113(1):127–137

    PubMed  CAS  Google Scholar 

  • Katsanis N, Fisher EM (1998) A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics 47(2):294–299. doi:10.1006/geno.1997.5115

    PubMed  CAS  Google Scholar 

  • Kim JH, Choi SY, Kang BH, Lee SM, Park HS, Kang GY, Bang JY, Cho EJ, Youn HD (2013) AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity. Biochem Biophys Res Commun 431(1):8–13. doi:10.1016/j.bbrc.2012.12.117

    PubMed  CAS  Google Scholar 

  • Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4(3):162–174

    PubMed  CAS  Google Scholar 

  • Kozlovsky Y, Kozlov MM (2003) Membrane fission: model for intermediate structures. Biophys J 85(1):85–96. doi:10.1016/S0006-3495(03)74457-9

    PubMed  CAS  Google Scholar 

  • Krauss M, Jia JY, Roux A, Beck R, Wieland FT, De Camilli P, Haucke V (2008) Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem 283(41):27717–27723. doi:10.1074/jbc.M804528200

    PubMed  CAS  Google Scholar 

  • Kreitzer G, Marmorstein A, Okamoto P, Vallee R, Rodriguez-Boulan E (2000) Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nat Cell Biol 2(2):125–127. doi:10.1038/35000081

    PubMed  CAS  Google Scholar 

  • Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK (2002) Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 10(4):857–869

    PubMed  CAS  Google Scholar 

  • Lenz M, Morlot S, Roux A (2009) Mechanical requirements for membrane fission: common facts from various examples. FEBS Lett 583(23):3839–3846. doi:10.1016/j.febslet.2009.11.012

    PubMed  CAS  Google Scholar 

  • Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, Bockmann RA, Corda D, Colanzi A, Marjomaki V, Luini A (2008) The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J 27(7):970–981. doi:10.1038/emboj.2008.59

    PubMed  CAS  Google Scholar 

  • Liljedahl M, Maeda Y, Colanzi A, Ayala I, Van Lint J, Malhotra V (2001) Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104(3):409–420

    PubMed  CAS  Google Scholar 

  • Lin X, Sun B, Liang M, Liang YY, Gast A, Hildebrand J, Brunicardi FC, Melchior F, Feng XH (2003) Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 11(5):1389–1396

    PubMed  CAS  Google Scholar 

  • Lundmark R, Doherty GJ, Vallis Y, Peter BJ, McMahon HT (2008) Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem J 414(2):189–194. doi:10.1042/BJ20081237

    PubMed  CAS  Google Scholar 

  • Mani-Telang P, Arnosti DN (2007) Developmental expression and phylogenetic conservation of alternatively spliced forms of the C-terminal binding protein corepressor. Dev Genes Evol 217(2):127–135. doi:10.1007/s00427-006-0121-4

    PubMed  CAS  Google Scholar 

  • McNiven MA (1998) Dynamin: a molecular motor with pinchase action. Cell 94(2):151–154

    PubMed  CAS  Google Scholar 

  • McNiven MA, Thompson HM (2006) Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 313(5793):1591–1594. doi:10.1126/science.1118133

    PubMed  CAS  Google Scholar 

  • McNiven MA, Cao H, Pitts KR, Yoon Y (2000) The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci 25(3):115–120

    PubMed  CAS  Google Scholar 

  • Merrill JC, Kagey MH, Melhuish TA, Powers SE, Zerlanko BJ, Wotton D (2010) Inhibition of CtBP1 activity by Akt-mediated phosphorylation. J Mol Biol 398(5):657–671. doi:10.1016/j.jmb.2010.03.048

    PubMed  CAS  Google Scholar 

  • Minamisawa N, Sato M, Cho KH, Ueno H, Takechi K, Kajikawa M, Yamato KT, Ohyama K, Toyooka K, Kim GT, Horiguchi G, Takano H, Ueda T, Tsukaya H (2011) ANGUSTIFOLIA, a plant homolog of CtBP/BARS, functions outside the nucleus. Plant J Cell Mol Biol 68(5):788–799. doi:10.1111/j.1365-313X.2011.04731.x

    CAS  Google Scholar 

  • Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW, Blaydes JP (2003) Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol CB 13(14):1234–1239

    CAS  Google Scholar 

  • Miserey-Lenkei S, Chalancon G, Bardin S, Formstecher E, Goud B, Echard A (2010) Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12(7):645–654. doi:10.1038/ncb2067

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1998) Molecules in the ARF orbit. J Biol Chem 273(34):21431–21434

    PubMed  CAS  Google Scholar 

  • Nardini M, Spano S, Cericola C, Pesce A, Massaro A, Millo E, Luini A, Corda D, Bolognesi M (2003) CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22(12):3122–3130. doi:10.1093/emboj/cdg283

    PubMed  CAS  Google Scholar 

  • Nardini M, Svergun D, Konarev PV, Spano S, Fasano M, Bracco C, Pesce A, Donadini A, Cericola C, Secundo F, Luini A, Corda D, Bolognesi M (2006) The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci Publ Protein Soc 15(5):1042–1050. doi:10.1110/ps.062115406

    CAS  Google Scholar 

  • Nardini M, Valente C, Ricagno S, Luini A, Corda D, Bolognesi M (2009) CtBP1/BARS Gly172– > Glu mutant structure: impairing NAD(H)-binding and dimerization. Biochem Biophys Res Commun 381(1):70–74. doi:10.1016/j.bbrc.2009.02.010

    PubMed  CAS  Google Scholar 

  • Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR (2009) Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11(12):1421–1426. doi:10.1038/ncb1989

    PubMed  CAS  Google Scholar 

  • Nibu Y, Zhang H, Levine M (1998) Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 280(5360):101–104

    PubMed  CAS  Google Scholar 

  • Orci L, Palmer DJ, Ravazzola M, Perrelet A, Amherdt M, Rothman JE (1993) Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362(6421):648–652. doi:10.1038/362648a0

    PubMed  CAS  Google Scholar 

  • Ostermann J, Orci L, Tani K, Amherdt M, Ravazzola M, Elazar Z, Rothman JE (1993) Stepwise assembly of functionally active transport vesicles. Cell 75(5):1015–1025

    PubMed  CAS  Google Scholar 

  • Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A (2001) The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep 2(12):1139–1144. doi:10.1093/embo-reports/kve250

    PubMed  CAS  Google Scholar 

  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303(5657):495–499. doi:10.1126/science.1092586

    PubMed  CAS  Google Scholar 

  • Pfanner N, Orci L, Glick BS, Amherdt M, Arden SR, Malhotra V, Rothman JE (1989) Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell 59(1):95–102

    PubMed  CAS  Google Scholar 

  • Polishchuk EV, Di Pentima A, Luini A, Polishchuk RS (2003) Mechanism of constitutive export from the golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-golgi network tubular domains. Mol Biol Cell 14(11):4470–4485. doi:10.1091/mbc.E03-01-0033

    PubMed  CAS  Google Scholar 

  • Pusapati GV, Krndija D, Armacki M, von Wichert G, von Blume J, Malhotra V, Adler G, Seufferlein T (2010) Role of the second cysteine-rich domain and Pro275 in protein kinase D2 interaction with ADP-ribosylation factor 1, trans-Golgi network recruitment, and protein transport. Mol Biol Cell 21(6):1011–1022. doi:10.1091/mbc.E09-09-0814

    PubMed  CAS  Google Scholar 

  • Riefler GM, Firestein BL (2001) Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem 276(51):48262–48268. doi:10.1074/jbc.M106503200

    PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E, Musch A (2005) Protein sorting in the Golgi complex: shifting paradigms. Biochim Biophys Acta 1744(3):455–464. doi:10.1016/j.bbamcr.2005.04.007

    PubMed  CAS  Google Scholar 

  • Romer W, Pontani LL, Sorre B, Rentero C, Berland L, Chambon V, Lamaze C, Bassereau P, Sykes C, Gaus K, Johannes L (2010) Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140(4):540–553. doi:10.1016/j.cell.2010.01.010

    PubMed  CAS  Google Scholar 

  • Roth D, Morgan A, Martin H, Jones D, Martens GJ, Aitken A, Burgoyne RD (1994) Characterization of 14-3-3 proteins in adrenal chromaffin cells and demonstration of isoform-specific phospholipid binding. Biochem J 301(Pt 1):305–310

    PubMed  CAS  Google Scholar 

  • Rothman JE (2002) Lasker Basic Medical Research Award. The machinery and principles of vesicle transport in the cell. Nat Med 8(10):1059–1062. doi:10.1038/nm770

    PubMed  CAS  Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24(8):1537–1545. doi:10.1038/sj.emboj.7600631

    PubMed  CAS  Google Scholar 

  • Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, Luzio JP, Kendrick-Jones J, Buss F (2005) Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169(2):285–295. doi:10.1083/jcb.200501162

    PubMed  CAS  Google Scholar 

  • Salvarezza SB, Deborde S, Schreiner R, Campagne F, Kessels MM, Qualmann B, Caceres A, Kreitzer G, Rodriguez-Boulan E (2009) LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol Biol Cell 20(1):438–451. doi:10.1091/mbc.E08-08-0891

    PubMed  CAS  Google Scholar 

  • Scales SJ, Scheller RH (1999) Lipid membranes shape up. Nature 401(6749):123–124. doi:10.1038/43582

    PubMed  CAS  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92(23):10467–10471

    PubMed  CAS  Google Scholar 

  • Schekman R (2002) Lasker Basic Medical Research Award. SEC mutants and the secretory apparatus. Nat Med 8(10):1055–1058. doi:10.1038/nm769

    PubMed  CAS  Google Scholar 

  • Schmidt JA, Brown WJ (2009) Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. J Cell Biol 186(2):211–218. doi:10.1083/jcb.200904147

    PubMed  CAS  Google Scholar 

  • Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Soling HD (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401(6749):133–141. doi:10.1038/43613

    PubMed  CAS  Google Scholar 

  • Schmitz F, Konigstorfer A, Sudhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28(3):857–872

    PubMed  CAS  Google Scholar 

  • Sever S, Damke H, Schmid SL (2000) Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol 150(5):1137–1148

    PubMed  CAS  Google Scholar 

  • Shemesh T, Luini A, Malhotra V, Burger KN, Kozlov MM (2003) Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys J 85(6):3813–3827. doi:10.1016/S0006-3495(03)74796-1

    PubMed  CAS  Google Scholar 

  • Shi Y, Sawada J, Sui G, el Affar B, Whetstine JR, Lan F, Ogawa H, Luke MP, Nakatani Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422(6933):735–738. doi:10.1038/nature01550

    PubMed  CAS  Google Scholar 

  • Siddhanta A, Backer JM, Shields D (2000) Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J Biol Chem 275(16):12023–12031

    PubMed  CAS  Google Scholar 

  • Spano S, Silletta MG, Colanzi A, Alberti S, Fiucci G, Valente C, Fusella A, Salmona M, Mironov A, Luini A, Corda D (1999) Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J Biol Chem 274(25):17705–17710

    PubMed  CAS  Google Scholar 

  • Szivak I, Lamb N, Heilmeyer LM (2006) Subcellular localization and structural function of endogenous phosphorylated phosphatidylinositol 4-kinase (PI4K92). J Biol Chem 281(24):16740–16749. doi:10.1074/jbc.M511645200

    PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10(8):368–375. doi:10.1016/j.tplants.2005.06.002

    PubMed  CAS  Google Scholar 

  • Testerink C, Dekker HL, Lim ZY, Johns MK, Holmes AB, Koster CG, Ktistakis NT, Munnik T (2004) Isolation and identification of phosphatidic acid targets from plants. Plant J Cell Mol Biol 39(4):527–536. doi:10.1111/j.1365-313X.2004.02152.x

    CAS  Google Scholar 

  • Thio SS, Bonventre JV, Hsu SI (2004) The CtBP2 co-repressor is regulated by NADH-dependent dimerization and possesses a novel N-terminal repression domain. Nucleic Acids Res 32(5):1836–1847. doi:10.1093/nar/gkh344

    PubMed  CAS  Google Scholar 

  • tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtova A, Bracko O, Gundelfinger ED, Brandstatter JH (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168(5):825–836. doi:10.1083/jcb.200408157

    Google Scholar 

  • Turner J, Crossley M (2001) The CtBP family: enigmatic and enzymatic transcriptional co-repressors. BioEssays News Rev Mol Cell Dev Biol 23(8):683–690. doi:10.1002/bies.1097

    CAS  Google Scholar 

  • Valente C, Spano S, Luini A, Corda D (2005) Purification and functional properties of the membrane fissioning protein CtBP3/BARS. Methods Enzymol 404:296–316. doi:10.1016/S0076-6879(05)04027-9

    PubMed  CAS  Google Scholar 

  • Valente C, Polishchuk R, De Matteis MA (2010) Rab6 and myosin II at the cutting edge of membrane fission. Nat Cell Biol 12(7):635–638. doi:10.1038/ncb0710-635

    PubMed  CAS  Google Scholar 

  • Valente C, Turacchio G, Mariggio S, Pagliuso A, Gaibisso R, Di Tullio G, Santoro M, Formiggini F, Spano S, Piccini D, Polishchuk RS, Colanzi A, Luini A, Corda D (2012) A 14-3-3gamma dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIbeta to regulate post-Golgi carrier formation. Nat Cell Biol 14(4):343–354. doi:10.1038/ncb2445

    PubMed  CAS  Google Scholar 

  • Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Dijk MC, Van Blitterswijk J (2000) 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 345(Pt 2):297–306

    Google Scholar 

  • Verger A, Quinlan KG, Crofts LA, Spano S, Corda D, Kable EP, Braet F, Crossley M (2006) Mechanisms directing the nuclear localization of the CtBP family proteins. Mol Cell Biol 26(13):4882–4894. doi:10.1128/MCB.02402-05

    PubMed  CAS  Google Scholar 

  • Vieira OV, Verkade P, Manninen A, Simons K (2005) FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J Cell Biol 170(4):521–526. doi:10.1083/jcb.200503078

    PubMed  CAS  Google Scholar 

  • Vincenz C, Dixit VM (1996) 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem 271(33):20029–20034

    PubMed  CAS  Google Scholar 

  • Wang SY, Iordanov M, Zhang Q (2006) c-Jun NH2-terminal kinase promotes apoptosis by down-regulating the transcriptional co-repressor CtBP. J Biol Chem 281(46):34810–34815. doi:10.1074/jbc.M607484200

    PubMed  CAS  Google Scholar 

  • Weigert R, Silletta MG, Spano S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, Facchiano F, Burger KN, Mironov A, Luini A, Corda D (1999) CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402(6760):429–433. doi:10.1038/46587

    PubMed  CAS  Google Scholar 

  • Yang JS, Lee SY, Spano S, Gad H, Zhang L, Nie Z, Bonazzi M, Corda D, Luini A, Hsu VW (2005) A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J 24(23):4133–4143. doi:10.1038/sj.emboj.7600873

    PubMed  CAS  Google Scholar 

  • Yang JS, Zhang L, Lee SY, Gad H, Luini A, Hsu VW (2006) Key components of the fission machinery are interchangeable. Nat Cell Biol 8(12):1376–1382. doi:10.1038/ncb1503

    PubMed  CAS  Google Scholar 

  • Yang JS, Gad H, Lee SY, Mironov A, Zhang L, Beznoussenko GV, Valente C, Turacchio G, Bonsra AN, Du G, Baldanzi G, Graziani A, Bourgoin S, Frohman MA, Luini A, Hsu VW (2008) A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10(10):1146–1153. doi:10.1038/ncb1774

    PubMed  CAS  Google Scholar 

  • Yang JS, Valente C, Polishchuk RS, Turacchio G, Layre E, Moody DB, Leslie CC, Gelb MH, Brown WJ, Corda D, Luini A, Hsu VW (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13(8):996–1003. doi:10.1038/ncb2273

    PubMed  CAS  Google Scholar 

  • Yeaman C, Ayala MI, Wright JR, Bard F, Bossard C, Ang A, Maeda Y, Seufferlein T, Mellman I, Nelson WJ, Malhotra V (2004) Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nat Cell Biol 6(2):106–112. doi:10.1038/ncb1090

    PubMed  CAS  Google Scholar 

  • Zhang YW, Arnosti DN (2011) Conserved catalytic and C-terminal regulatory domains of the C-terminal binding protein corepressor fine-tune the transcriptional response in development. Mol Cell Biol 31(2):375–384. doi:10.1128/MCB.00772-10

    PubMed  Google Scholar 

  • Zhang Q, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295(5561):1895–1897. doi:10.1126/science.1069300

    PubMed  CAS  Google Scholar 

  • Zhang Q, Nottke A, Goodman RH (2005) Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci USA 102(8):2802–2807. doi:10.1073/pnas.0409373102

    PubMed  CAS  Google Scholar 

  • Zhao X, Varnai P, Tuymetova G, Balla A, Toth ZE, Oker-Blom C, Roder J, Jeromin A, Balla T (2001) Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 276(43):40183–40189. doi:10.1074/jbc.M104048200

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr C.P. Berrie for editorial assistance. The cited work in the authors’ laboratories was supported by the Italian Association for Cancer Research (to D.C. IG10341, to A.L. IG4700), Grant FIT DM 24/09/2009, Legge 46/82, and FaReBio, Ministry of Economy and Finance, MIUR, projects PON01-00117 and PON01-00862, and PNR-CNR Aging Program 2012-2014. C.V. was a recipient of an Italian Foundation for Cancer Research Fellowships (FIRC, Milan, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Valente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valente, C., Luini, A. & Corda, D. Components of the CtBP1/BARS-dependent fission machinery. Histochem Cell Biol 140, 407–421 (2013). https://doi.org/10.1007/s00418-013-1138-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1138-1

Keywords

Navigation