Skip to main content
Log in

Actin acting at the Golgi

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akkerman M, Overdijk EJ, Schel JH, Emons AM, Ketelaar T (2011) Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. Plant Cell Physiol 52:1844–1855

    Article  PubMed  CAS  Google Scholar 

  • Almeida CG, Yamada A, Tenza D, Louvard D, Raposo G, Coudrier E (2011) Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat Cell Biol 13:779–789

    Article  PubMed  CAS  Google Scholar 

  • Ang AL, Folsch H, Koivisto UM, Pypaert M, Mellman I (2003) The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J Cell Biol 163:339–350

    Article  PubMed  CAS  Google Scholar 

  • Anitei M, Stange C, Parshina I, Baust T, Schenck A, Raposo G, Kirchhausen T, Hoflack B (2010) Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat Cell Biol 12:330–340

    Article  PubMed  CAS  Google Scholar 

  • Arai S, Noda Y, Kainuma S, Wada I, Yoda K (2008) Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2. Curr Biol 18:987–991

    Article  PubMed  CAS  Google Scholar 

  • Au JS, Puri C, Ihrke G, Kendrick-Jones J, Buss F (2007) Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol 177:103–114

    Article  PubMed  CAS  Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K Is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    Article  PubMed  CAS  Google Scholar 

  • Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–709

    Article  PubMed  CAS  Google Scholar 

  • Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, Perrimon N, Malhotra V (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439:604–607

    Article  PubMed  CAS  Google Scholar 

  • Bassereau P, Goud B (2011) Physics, biology and the right chemistry. F1000 Biol Rep 3:7

    Article  PubMed  Google Scholar 

  • Beck KA, Nelson WJ (1998) A spectrin membrane skeleton of the Golgi complex. Biochim Biophys Acta 1404:153–160

    Article  PubMed  CAS  Google Scholar 

  • Beck KA, Buchanan JA, Malhotra V, Nelson WJ (1994) Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex. J Cell Biol 127:707–723

    Article  PubMed  CAS  Google Scholar 

  • Beck KA, Buchanan JA, Nelson WJ (1997) Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. J Cell Sci 110:1239–1249

    PubMed  CAS  Google Scholar 

  • Becker B, Melkonian M (1996) The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev 60:697–721

    PubMed  CAS  Google Scholar 

  • Blancaflor EB (2002) The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21:120–136

    Article  PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Boutte Y, Vernhettes S, Satiat-Jeunemaitre B (2007) Involvement of the cytoskeleton in the secretory pathway and plasma membrane organisation of higher plant cells. Cell Biol Int 31:649–654

    Article  PubMed  CAS  Google Scholar 

  • Brandizzi F, Saint-Jore C, Moore I, Hawes C (2003) The relationship between endomembranes and the plant cytoskeleton. Cell Biol Int 27:177–179

    Article  PubMed  CAS  Google Scholar 

  • Brandstaetter H, Kendrick-Jones J, Buss F (2012) Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion. J Cell Sci 125:1991–2003

    Article  PubMed  CAS  Google Scholar 

  • Brazer SC, Williams HP, Chappell TG, Cande WZ (2000) A fission yeast kinesin affects Golgi membrane recycling. Yeast 16:149–166

    Article  PubMed  CAS  Google Scholar 

  • Brownhill K, Wood L, Allan V (2009) Molecular motors and the Golgi complex: staying put and moving through. Semin Cell Dev Biol 20(7):784–792

    Article  PubMed  CAS  Google Scholar 

  • Buss F, Kendrick-Jones J (2008) How are the cellular functions of myosin VI regulated within the cell? Biochem Biophys Res Commun 369:165–175

    Article  PubMed  CAS  Google Scholar 

  • Buss F, Spudich G, Kendrick-Jones J (2004) Myosin VI: cellular functions and motor properties. Annu Rev Cell Dev Biol 20:649–676

    Article  PubMed  CAS  Google Scholar 

  • Camera P, da Silva JS, Griffiths G, Giuffrida MG, Ferrara L, Schubert V, Imarisio S, Silengo L, Dotti CG, Di Cunto F (2003) Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol 5:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251

    Article  PubMed  CAS  Google Scholar 

  • Campellone KG, Webb NJ, Znameroski EA, Welch MD (2008) WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134:148–161

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL, Stamnes M, McNiven MA (2005) Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 7:483–492

    Article  PubMed  CAS  Google Scholar 

  • Carreno S, Engqvist-Goldstein AE, Zhang CX, McDonald KL, Drubin DG (2004) Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J Cell Biol 165:781–788

    Article  PubMed  CAS  Google Scholar 

  • Chen JL, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M (2004) Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett 566:281–286

    Article  PubMed  CAS  Google Scholar 

  • Chen JL, Fucini RV, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M (2005) Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J Cell Biol 169:383–389

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Baluska F, Samaj J (2006) Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J 47:174–195

    Article  PubMed  CAS  Google Scholar 

  • Cohen D, Musch A, Rodriguez-Boulan E (2001) Selective control of basolateral membrane protein polarity by cdc42. Traffic 2:556–564

    Article  PubMed  CAS  Google Scholar 

  • Colon-Franco JM, Gomez TS, Billadeau DD (2011) Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex. J Cell Sci 124:3118–3126

    Article  PubMed  CAS  Google Scholar 

  • Coudrier E, Almeida CG (2011) Myosin 1 controls membrane shape by coupling F-Actin to membrane. Bioarchitecture 1:230–235

    Article  PubMed  Google Scholar 

  • Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hofte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant cell 21:1141–1154

    Article  PubMed  CAS  Google Scholar 

  • Curwin AJ, von Blume J, Malhotra V (2012) Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol Biol Cell 23:2327–2338

    Article  PubMed  CAS  Google Scholar 

  • daSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:1753–1771

    Article  PubMed  CAS  Google Scholar 

  • de Forges H, Boussou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–274

    Article  PubMed  CAS  Google Scholar 

  • De Matteis MA, Morrow JS (2000) Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113:2331–2343

    PubMed  Google Scholar 

  • DePina AS, Wollert T, Langford GM (2007) Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell Motil Cytoskeleton 64:739–755

    Article  PubMed  CAS  Google Scholar 

  • Devarajan P, Stabach PR, Mann AS, Ardito T, Kashgarian M, Morrow JS (1996) Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. J Cell Biol 133:819–830

    Article  PubMed  CAS  Google Scholar 

  • Devarajan P, Stabach PR, De Matteis MA, Morrow JS (1997) Na, K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc Natl Acad Sci USA 94:10711–10716

    Article  PubMed  CAS  Google Scholar 

  • di Campli A, Valderrama F, Babia T, De Matteis MA, Luini A, Egea G (1999) Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil Cytoskeleton 43:334–348

    Article  PubMed  Google Scholar 

  • Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Meerloo T, Farquhar MG, Zhou H, Field SJ (2009) GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139:337–351

    Article  PubMed  CAS  Google Scholar 

  • Disanza A, Scita G (2008) Cytoskeletal regulation: coordinating actin and microtubule dynamics in membrane trafficking. Curr Biol 18:R873–R875

    Article  PubMed  CAS  Google Scholar 

  • Dubois T, Paleotti O, Mironov AA, Fraisier V, Stradal TE, De Matteis MA, Franco M, Chavrier P (2005) Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol 7:353–364

    Article  PubMed  CAS  Google Scholar 

  • Duran JM, Valderrama F, Castel S, Magdalena J, Tomas M, Hosoya H, Renau-Piqueras J, Malhotra V, Egea G (2003) Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell 14:445–459

    Article  PubMed  CAS  Google Scholar 

  • Egea G, Rios RM (2008) The role of the cytoskeleton in the structure and function of the Golgi apparatus. In: Mironov AA, Pavelka M (eds) The Golgi apparatus—state of the art 110 years after Camillo Golgi’s discovery. Springer Wien, New York, pp 270–300

    Chapter  Google Scholar 

  • Egea G, Lazaro-Dieguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18:168–178

    Article  PubMed  CAS  Google Scholar 

  • Egorov MV, Capestrano M, Vorontsova OA, Di Pentima A, Egorova AV, Mariggio S, Ayala MI, Tete S, Gorski JL, Luini A, Buccione R, Polishchuk RS (2009) Faciogenital dysplasia protein (FGD1) regulates export of cargo proteins from the Golgi complex via Cdc42 activation. Mol Biol Cell 20:2413–2427

    Article  PubMed  CAS  Google Scholar 

  • Eichinger L, Pachebat JA, Glockner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  PubMed  CAS  Google Scholar 

  • Erickson JW, Zhang C, Kahn RA, Evans T, Cerione RA (1996) Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J Biol Chem 271:26850–26854

    Article  PubMed  CAS  Google Scholar 

  • Estrada L, Caron E, Gorski JL (2001) Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane. Hum Mol Genet 10:485–495

    Article  PubMed  CAS  Google Scholar 

  • Fath KR (2005) Characterization of myosin-II binding to Golgi stacks in vitro. Cell Motil Cytoskeleton 60:222–235

    Article  PubMed  CAS  Google Scholar 

  • Fath KR, Burgess DR (1993) Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol 120:117–127

    Article  PubMed  CAS  Google Scholar 

  • Finger FP, Novick P (2000) Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae. Genetics 156:943–951

    PubMed  CAS  Google Scholar 

  • Fucini RV, Navarrete A, Vadakkan C, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M (2000) Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes. J Biol Chem 275:18824–18829

    Article  PubMed  CAS  Google Scholar 

  • Gad AK, Nehru V, Ruusala A, Aspenstrom P (2012) RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules. Mol Biol Cell 23(24):4807–4819

    Article  PubMed  CAS  Google Scholar 

  • Gallop JL, Walrant A, Cantley LC, Kirschner MW (2013) Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9. Proc Natl Acad Sci USA 110:7193–7198

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Sztul E (2001) A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol 152:877–894

    Article  PubMed  CAS  Google Scholar 

  • Gao YS, Vrielink A, MacKenzie R, Sztul E (2002) A novel type of regulation of the vimentin intermediate filament cytoskeleton by a Golgi protein. Eur J Cell Biol 81:391–401

    Article  PubMed  CAS  Google Scholar 

  • Gloss A, Rivero F, Khaire N, Muller R, Loomis WF, Schleicher M, Noegel AA (2003) Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton. Mol Biol Cell 14:2716–2727

    Article  PubMed  CAS  Google Scholar 

  • Godi A, Santone I, Pertile P, Devarajan P, Stabach PR, Morrow JS, Di Tullio G, Polishchuk R, Petrucci TC, Luini A, De Matteis MA (1998) ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc Natl Acad Sci USA 95:8607–8612

    Article  PubMed  CAS  Google Scholar 

  • Gomez TS, Billadeau DD (2009) A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 17:699–711

    Article  PubMed  CAS  Google Scholar 

  • Goud B, Gleeson PA (2010) TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 20:329–336

    Article  PubMed  CAS  Google Scholar 

  • Guerriero CJ, Weixel KM, Bruns JR, Weisz OA (2006) Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. J Biol Chem 281:15376–15384

    Article  PubMed  CAS  Google Scholar 

  • Guzik-Lendrum S, Heissler SM, Billington N, Takagi Y, Yang Y, Knight PJ, Homsher E, Sellers JR (2013) Mammalian myosin-18A, a highly divergent myosin. J Biol Chem 288:9532–9548

    Article  PubMed  CAS  Google Scholar 

  • Harris KP, Tepass U (2010) Cdc42 and vesicle trafficking in polarized cells. Traffic 11:1272–1279

    Article  PubMed  CAS  Google Scholar 

  • Harsay E, Schekman R (2007) Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell 18:1203–1219

    Article  PubMed  CAS  Google Scholar 

  • Hawes C, Satiat-Jeunemaitre B (2005) The plant Golgi apparatus—going with the flow. Biochim Biophys Acta 1744:93–107

    Article  PubMed  CAS  Google Scholar 

  • He CY (2007) Golgi biogenesis in simple eukaryotes. Cell Microbiol 9:566–572

    Article  PubMed  CAS  Google Scholar 

  • He CY, Ho HH, Malsam J, Chalouni C, West CM, Ullu E, Toomre D, Warren G (2004) Golgi duplication in Trypanosoma brucei. J Cell Biol 165:313–321

    Article  PubMed  CAS  Google Scholar 

  • Hehnly H, Stamnes M (2007) Regulating cytoskeleton-based vesicle motility. FEBS Lett 581:2112–2118

    Article  PubMed  CAS  Google Scholar 

  • Hehnly H, Longhini KM, Chen JL, Stamnes M (2009) Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42. Mol Biol Cell 20:4303–4312

    Article  PubMed  CAS  Google Scholar 

  • Heimann K, Percival JM, Weinberger R, Gunning P, Stow JL (1999) Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles. J Biol Chem 274:10743–10750

    Article  PubMed  CAS  Google Scholar 

  • Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One 2:e749

    Article  PubMed  CAS  Google Scholar 

  • Heuvingh J, Franco M, Chavrier P, Sykes C (2007) ARF1-mediated actin polymerization produces movement of artificial vesicles. Proc Natl Acad Sci USA 104:16928–16933

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Sano T, Hasezawa S (2007) Actin microfilament dynamics and actin side-binding proteins in plants. Curr Opin Plant Biol 10:549–556

    Article  PubMed  CAS  Google Scholar 

  • Holappa K, Suokas M, Soininen P, Kellokumpu S (2001) Identification of the full-length AE2 (AE2a) isoform as the Golgi-associated anion exchanger in fibroblasts. J Histochem Cytochem 49:259–269

    Article  PubMed  CAS  Google Scholar 

  • Holappa K, Munoz MT, Egea G, Kellokumpu S (2004) The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells. FEBS Lett 564:97–103

    Article  PubMed  CAS  Google Scholar 

  • Holleran EA, Holzbaur EL (1998) Speculating about spectrin: new insights into the Golgi-associated cytoskeleton. Trends Cell Biol 8:26–29

    Article  PubMed  CAS  Google Scholar 

  • Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL (2001) Beta III spectrin binds to the Arp1 subunit of dynactin. J Biol Chem 276:36598–36605

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Zhong R, Morrison WH 3rd, Ye ZH (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217:912–921

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A (2012) cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell 23:3203–3214

    Article  PubMed  CAS  Google Scholar 

  • Jacob R, Heine M, Alfalah M, Naim HY (2003) Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol 13:607–612

    Article  PubMed  CAS  Google Scholar 

  • Jarmoszewicz K, Lukasiak K, Riezman H, Kaminska J (2012) Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants. PLoS One 7:e39582

    Article  PubMed  CAS  Google Scholar 

  • Jenna S, Caruso ME, Emadali A, Nguyen DT, Dominguez M, Li S, Roy R, Reboul J, Vidal M, Tzimas GN, Bosse R, Chevet E (2005) Regulation of membrane trafficking by a novel Cdc42-related protein in Caenorhabditis elegans epithelial cells. Mol Biol Cell 16:1629–1639

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Sultana A, Gandhi P, Franklin E, Hamamoto S, Khan AR, Munson M, Schekman R, Weisman LS (2011) Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell 21:1156–1170

    Article  PubMed  CAS  Google Scholar 

  • Jordens I, Marsman M, Kuijl C, Neefjes J (2005) Rab proteins, connecting transport and vesicle fusion. Traffic 6:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Jung E, Fucini P, Stewart M, Noegel AA, Schleicher M (1996) Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity. EMBO J 15:1238–1246

    PubMed  CAS  Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7:404–414

    Article  PubMed  CAS  Google Scholar 

  • Kaminska J, Spiess M, Stawiecka-Mirota M, Monkaityte R, Haguenauer-Tsapis R, Urban-Grimal D, Winsor B, Zoladek T (2011) Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro. Eur J Cell Biol 90:1016–1028

    Article  PubMed  CAS  Google Scholar 

  • Kang Q, Wang T, Zhang H, Mohandas N, An X (2009) A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane. J Cell Sci 122:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Morita MT, Tasaka M (2010) Defects in dynamics and functions of actin filament in Arabidopsis caused by the dominant-negative actin fiz1-induced fragmentation of actin filament. Plant Cell Physiol 51:333–338

    Article  PubMed  CAS  Google Scholar 

  • Kepes F, Rambourg A, Satiat-Jeunemaitre B (2005) Morphodynamics of the secretory pathway. Int Rev Cytol 242:55–120

    Article  PubMed  CAS  Google Scholar 

  • Kerkhoff E, Simpson JC, Leberfinger CB, Otto IM, Doerks T, Bork P, Rapp UR, Raabe T, Pepperkok R (2001) The Spir actin organizers are involved in vesicle transport processes. Curr Biol 11:1963–1968

    Article  PubMed  CAS  Google Scholar 

  • Kessels MM, Qualmann B (2004) The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci 117:3077–3086

    Article  PubMed  CAS  Google Scholar 

  • Kessels MM, Dong J, Leibig W, Westermann P, Qualmann B (2006) Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J Cell Sci 119:1504–1516

    Article  PubMed  CAS  Google Scholar 

  • Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM (2012) Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton 69:625–643

    Article  PubMed  CAS  Google Scholar 

  • Kondylis V, Rabouille C (2003) A novel role for dp115 in the organization of tER sites in Drosophila. J Cell Biol 162:185–198

    Article  PubMed  CAS  Google Scholar 

  • Kondylis V, Rabouille C (2009) The Golgi apparatus: lessons from Drosophila. FEBS Lett 583:3827–3838

    Article  PubMed  CAS  Google Scholar 

  • Kondylis V, van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C (2007) The Golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE. Dev Cell 12:901–915

    Article  PubMed  CAS  Google Scholar 

  • Kostenko EV, Mahon GM, Cheng L, Whitehead IP (2005) The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs. J Biol Chem 280:2807–2817

    Article  PubMed  CAS  Google Scholar 

  • Kroschewski R, Hall A, Mellman I (1999) Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol 1:8–13

    Article  PubMed  CAS  Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Lanzetti L (2007) Actin in membrane trafficking. Curr Opin Cell Biol 19:453–458

    Article  PubMed  CAS  Google Scholar 

  • Lazaro-Dieguez F, Jimenez N, Barth H, Koster AJ, Renau-Piqueras J, Llopis JL, Burger KN, Egea G (2006) Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton 63:778–791

    Article  PubMed  CAS  Google Scholar 

  • Lazaro-Dieguez F, Colonna C, Cortegano M, Calvo M, Martinez SE, Egea G (2007) Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network. FEBS Lett 581:3875–3881

    Article  PubMed  CAS  Google Scholar 

  • Lebreton S, Paladino S, Zurzolo C (2008) Selective roles for cholesterol and actin in compartmentalization of different proteins in the Golgi and plasma membrane of polarized cells. J Biol Chem 283:29545–29553

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Han JW, Leeper L, Gruver JS, Chung CY (2009) Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis. Biochim Biophys Acta 1793:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Loubéry S, Coudrier E (2008) Myosins in the secretory pathway: tethers or transporters? Cell Mol Life Sci 65:2790–2800

    Article  PubMed  CAS  Google Scholar 

  • Lowe M (2011) Structural organization of the Golgi apparatus. Curr Cell Biol 23:85–93

    Article  CAS  Google Scholar 

  • Luna A, Matas OB, Martinez-Menarguez JA, Mato E, Duran JM, Ballesta J, Way M, Egea G (2002) Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell 13:866–879

    Article  PubMed  CAS  Google Scholar 

  • Lux SE (1979) Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Semin Hematol 16:21–51

    PubMed  CAS  Google Scholar 

  • Matas OB, Martinez-Menarguez JA, Egea G (2004) Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic 5:838–846

    Article  PubMed  CAS  Google Scholar 

  • Matas OB, Fritz S, Luna A, Egea G (2005) Membrane trafficking at the ER/Golgi interface: functional implications of RhoA and Rac1. Eur J Cell Biol 84:699–707

    Article  PubMed  CAS  Google Scholar 

  • Mazzochi C, Benos DJ, Smith PR (2006) Interaction of epithelial ion channels with the actin-based cytoskeleton. Am J Physiol Renal Physiol 291:F1113–F1122

    Article  PubMed  CAS  Google Scholar 

  • Menetrey J, Perderiset M, Cicolari J, Dubois T, Elkhatib N, El Khadali F, Franco M, Chavrier P, Houdusse A (2007) Structural basis for ARF1-mediated recruitment of ARHGAP21 to Golgi membranes. EMBO J 26:1953–1962

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ (2004) Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol 14:352–358

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Scordilis SP, Hepler PK (1995) Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci 108:2549–2563

    PubMed  CAS  Google Scholar 

  • Miserey-Lenkei S, Chalancon G, Bardin S, Formstecher E, Goud B, Echard A (2010) Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12:645–654

    Article  PubMed  CAS  Google Scholar 

  • Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA (2003) Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 14:2277–2291

    Article  PubMed  CAS  Google Scholar 

  • Mollenhauer HH, Morre DJ (1976) Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87:39–48

    Article  PubMed  CAS  Google Scholar 

  • Montes de Oca G, Lezama RA, Mondragon R, Castillo AM, Meza I (1997) Myosin I interactions with actin filaments and trans-Golgi-derived vesicles in MDCK cell monolayers. Arch Med Res 28:321–328

    PubMed  CAS  Google Scholar 

  • Mooren OL, Galletta BJ, Cooper JA (2012) Roles for actin assembly in endocytosis. Annu Rev Biochem 81:661–686

    Article  PubMed  CAS  Google Scholar 

  • Moriyama Y, Nelson N (1989) H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J Biol Chem 264:18445–18450

    PubMed  CAS  Google Scholar 

  • Moseley JB, Goode BL (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70:605–645

    Article  PubMed  CAS  Google Scholar 

  • Mulholland J, Wesp A, Riezman H, Botstein D (1997) Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle. Mol Biol Cell 8:1481–1499

    Article  PubMed  CAS  Google Scholar 

  • Musch A, Cohen D, Rodriguez-Boulan E (1997) Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol 138:291–306

    Article  PubMed  CAS  Google Scholar 

  • Musch A, Cohen D, Kreitzer G, Rodriguez-Boulan E (2001) cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J 20:2171–2179

    Article  PubMed  CAS  Google Scholar 

  • Myers KR, Casanova JE (2008) Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 18:184–192

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H (2005) Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem 280:1561–1572

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1142

    Article  PubMed  CAS  Google Scholar 

  • Ng MM, Dippold HC, Buschman MD, Noakes CJ, Field SJ (2013) GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Mol Biol Cell 24:796–808

    Article  PubMed  CAS  Google Scholar 

  • Noratel EF, Petty CL, Kelsey JS, Cost HN, Basappa N, Blumberg DD (2012) The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells. BMC Cell Biol 13:29

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40:405–416

    Article  PubMed  CAS  Google Scholar 

  • Papoulas O, Hays TS, Sisson JC (2005) The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol 7:612–618

    Article  PubMed  CAS  Google Scholar 

  • Pathak R, Delorme-Walker VD, Howell MC, Anselmo AN, White MA, Bokoch GM, Dermardirossian C (2012) The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic. Dev Cell 23:397–411

    Article  PubMed  CAS  Google Scholar 

  • Pelletier L, Stern CA, Pypaert M, Sheff D, Ngo HM, Roper N, He CY, Hu K, Toomre D, Coppens I, Roos DS, Joiner KA, Warren G (2002) Golgi biogenesis in Toxoplasma gondii. Nature 418:548–552

    Article  PubMed  CAS  Google Scholar 

  • Percival JM, Hughes JA, Brown DL, Schevzov G, Heimann K, Vrhovski B, Bryce N, Stow JL, Gunning PW (2004) Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol Biol Cell 15:268–280

    Article  PubMed  CAS  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Dolja VV (2010) Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell 22:1883–1897

    Article  PubMed  CAS  Google Scholar 

  • Picton JM, Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci 49:261–272

    PubMed  CAS  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  PubMed  CAS  Google Scholar 

  • Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D (1992) Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3:789–803

    Article  PubMed  CAS  Google Scholar 

  • Prigozhina NL, Waterman-Storer CM (2004) Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol 14:88–98

    Article  PubMed  CAS  Google Scholar 

  • Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591

    Article  PubMed  CAS  Google Scholar 

  • Ramabhadran V, Korobova F, Rahme GJ, Higgs HN (2011) Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture. Mol Biol Cell 22:4822–4833

    Article  PubMed  CAS  Google Scholar 

  • Rambourg A, Clermont Y (1986) Tridimensional structure of the Golgi apparatus in type A ganglion cells of the rat. Am J Anat 176:393–409

    Article  PubMed  CAS  Google Scholar 

  • Rambourg A, Jackson CL, Clermont Y (2001) Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae. J Cell Sci 114:2231–2239

    PubMed  CAS  Google Scholar 

  • Ramírez IB, Lowe M (2009) Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 20:770–779

    Article  PubMed  CAS  Google Scholar 

  • Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV (1999) The coronin-like protein POD-1 is required for anterior–posterior axis formation and cellular architecture in the nematode caenorhabditis elegans. Genes Dev 13:2838–2851

    Article  PubMed  CAS  Google Scholar 

  • Rehberg M, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Graf R (2005) Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell 16:2759–2771

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529

    Article  PubMed  CAS  Google Scholar 

  • Rios RM, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Cell Biol 15:60–66

    Article  CAS  Google Scholar 

  • Rodriguez-Boulan E, Kreitzer G, Musch A (2005) Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6:233–247

    Article  PubMed  CAS  Google Scholar 

  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, Glick BS (1999) Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145:69–81

    Article  PubMed  CAS  Google Scholar 

  • Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O’Connor J, Glick BS (2001) A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153:47–62

    Article  PubMed  CAS  Google Scholar 

  • Rosso S, Bollati F, Bisbal M, Peretti D, Sumi T, Nakamura T, Quiroga S, Ferreira A, Caceres A (2004) LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell 15:3433–3449

    Article  PubMed  CAS  Google Scholar 

  • Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10:311–320

    Article  PubMed  CAS  Google Scholar 

  • Rybakin V, Clemen CS (2005) Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 27:625–632

    Article  PubMed  CAS  Google Scholar 

  • Rybakin V, Stumpf M, Schulze A, Majoul IV, Noegel AA, Hasse A (2004) Coronin 7, the mammalian POD-1 homologue, localizes to the Golgi apparatus. FEBS Lett 573:161–167

    Article  PubMed  CAS  Google Scholar 

  • Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, Luzio JP, Kendrick-Jones J, Buss F (2005) Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169:285–295

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29:661–678

    Article  PubMed  CAS  Google Scholar 

  • Salcedo-Sicilia L, Granell S, Jovic M, Sicart A, Mato E, Johannes L, Balla T, Egea G (2013) βIII spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem 288:2157–2166

    Article  PubMed  CAS  Google Scholar 

  • Salvarezza SB, Deborde S, Schreiner R, Campagne F, Kessels MM, Qualmann B, Caceres A, Kreitzer G, Rodriguez-Boulan E (2009) LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol Biol Cell 20:438–451

    Article  PubMed  CAS  Google Scholar 

  • Samaj J, Muller J, Beck M, Bohm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A (2011) PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev Cell 20:47–59

    Article  PubMed  CAS  Google Scholar 

  • Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc 181:162–177

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72

    Article  PubMed  CAS  Google Scholar 

  • Siddhanta A, Radulescu A, Stankewich MC, Morrow JS, Shields D (2003) Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Sisson JC, Field C, Ventura R, Royou A, Sullivan W (2000) Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol 151:905–918

    Article  PubMed  CAS  Google Scholar 

  • Smythe E, Ayscough KR (2006) Actin regulation in endocytosis. J Cell Sci 119:4589–4598

    Article  PubMed  CAS  Google Scholar 

  • Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7:897–908

    Article  PubMed  CAS  Google Scholar 

  • Somesh BP, Neffgen C, Iijima M, Devreotes P, Rivero F (2006) Dictyostelium RacH regulates endocytic vesicular trafficking and is required for localization of vacuolin. Traffic 7:1194–1212

    Article  PubMed  CAS  Google Scholar 

  • Sparkes I (2011) Recent advances in understanding plant myosin function: life in the fast lane. Mol Plant 4(5):805–812

    Article  PubMed  CAS  Google Scholar 

  • Spelbrink RG, Nothwehr SF (1999) The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol Biol Cell 10:4263–4281

    Article  PubMed  CAS  Google Scholar 

  • Stankewich MC, Tse WT, Peters LL, Ch’ng Y, John KM, Stabach PR, Devarajan P, Morrow JS, Lux SE (1998) A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci USA 95:14158–14163

    Article  PubMed  CAS  Google Scholar 

  • Storrie B, Micaroni M, Morgan GP, Jones N, Kamykowski JA, Wilkins N, Pan TH, Marsh BJ (2012) Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic 13:727–744

    Article  PubMed  CAS  Google Scholar 

  • Stow JL, Fath KR, Burgess DR (1998) Budding roles for myosin II on the Golgi. Trends Cell Biol 8:138–141

    Article  PubMed  CAS  Google Scholar 

  • Styers ML, Kowalczyk AP, Faundez V (2006) Architecture of the vimentin cytoskeleton is modified by perturbation of the GTPase ARF1. J Cell Sci 119:3643–3654

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Myosin VI rewrites the rules for myosin motors. Cell 141:573–582

    Article  PubMed  CAS  Google Scholar 

  • Taylor MJ, Lampe M, Merrifield CJ (2012) A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol 10:e1001302

    Article  PubMed  CAS  Google Scholar 

  • Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246:263–279

    Article  PubMed  CAS  Google Scholar 

  • Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB (2005) Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15:608–617

    Article  PubMed  CAS  Google Scholar 

  • Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16:2443–2457

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Yoshimura SH, Takeyasu K, Sato MH (2002) Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein. Genes Cells 7:743–753

    Article  PubMed  CAS  Google Scholar 

  • Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76:9–17

    Article  PubMed  CAS  Google Scholar 

  • Valderrama F, Luna A, Babia T, Martinez-Menarguez JA, Ballesta J, Barth H, Chaponnier C, Renau-Piqueras J, Egea G (2000) The Golgi-associated COPI-coated buds and vesicles contain b/g-actin. Proc Natl Acad Sci USA 97:1560–1565

    Article  PubMed  CAS  Google Scholar 

  • Valderrama F, Duran JM, Babia T, Barth H, Renau-Piqueras J, Egea G (2001) Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic 2:717–726

    Article  PubMed  CAS  Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545

    Article  PubMed  CAS  Google Scholar 

  • von Blume J, Duran JM, Forlanelli E, Alleaume AM, Egorov M, Polishchuk R, Molina H, Malhotra V (2009) Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. J Cell Biol 187:1055–1069

    Article  CAS  Google Scholar 

  • von Blume J, Alleaume AM, Cantero-Recasens G, Curwin A, Carreras-Sureda A, Zimmermann T, van Galen J, Wakana Y, Valverde MA, Malhotra V (2011) ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell 20:652–662

    Article  CAS  Google Scholar 

  • Wakana Y, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, Malhotra V (2012) A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface. EMBO J 31:3976–3990

    Article  PubMed  CAS  Google Scholar 

  • Warner CL, Stewart A, Luzio JP, Steel KP, Libby RT, Kendrick-Jones J, Buss F (2003) Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J 22:569–579

    Article  PubMed  CAS  Google Scholar 

  • Weiner OH, Murphy J, Griffiths G, Schleicher M, Noegel AA (1993) The actin-binding protein comitin (p24) is a component of the Golgi apparatus. J Cell Biol 123:23–34

    Article  PubMed  CAS  Google Scholar 

  • Wu WJ, Erickson JW, Lin R, Cerione RA (2000) The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405(6788):800–804

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kopecka M (2010) Ultrastructural disorder of the secretory pathway in temperature-sensitive actin mutants of Saccharomyces cerevisiae. J Electron Microsc 59:141–152

    Article  Google Scholar 

  • Yang YD, Elamawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG (2005) Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell 17:1513–1531

    Article  PubMed  CAS  Google Scholar 

  • Zilberman Y, Alieva NO, Miserey-Lenkei S, Lichtenstein A, Kam Z, Sabanay H, Bershadsky A (2011) Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics. Mol Biol Cell 22:2900–2911

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

G.E. thanks current and past members of his laboratory for their support, good work and stimulating discussions, and many friends and colleagues for suggestions, criticisms and/or reagents that altogether have contributed to the progress in our research in this field. G.E. also thanks Darya Gorbenko, Rosa M. Ríos and Bruno Goud for critical reading of the manuscript, and Robin Rycroft for his invaluable editorial assistance. Carla Serra, Enric Gutiérrez and Laia Salcedo-Sicilia are recipients of predoctoral fellowships from the Spanish or Catalonian Science agencies. The work carried out in our laboratory has been regularly supported by grants from Spanish government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Egea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egea, G., Serra-Peinado, C., Salcedo-Sicilia, L. et al. Actin acting at the Golgi. Histochem Cell Biol 140, 347–360 (2013). https://doi.org/10.1007/s00418-013-1115-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1115-8

Keywords

Navigation