Skip to main content

Advertisement

Log in

From lamins to lamina: a structural perspective

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Lamin proteins are the major constituents of the nuclear lamina, a proteinaceous network that lines the inner nuclear membrane. Primarily, the nuclear lamina provides structural support for the nucleus and the nuclear envelope; however, lamins and their associated proteins are also involved in most of the nuclear processes, including DNA replication and repair, regulation of gene expression, and signaling. Mutations in human lamin A and associated proteins were found to cause a large number of diseases, termed ‘laminopathies.’ These diseases include muscular dystrophies, lipodystrophies, neuropathies, and premature aging syndromes. Despite the growing number of studies on lamins and their associated proteins, the molecular organization of lamins in health and disease is still elusive. Likewise, there is no comprehensive view how mutations in lamins result in a plethora of diseases, selectively affecting different tissues. Here, we discuss some of the structural aspects of lamins and the nuclear lamina organization, in light of recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323(6088):560–564. doi:10.1038/323560a0

    Article  PubMed  CAS  Google Scholar 

  • Bates M, Huang B, Dempsey GT, Zhuang XW (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753. doi:10.1126/science.1146598

    Article  PubMed  CAS  Google Scholar 

  • Beck LA, Hosick TJ, Sinensky M (1990) Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol 110(5):1489–1499

    Article  PubMed  CAS  Google Scholar 

  • Ben-Harush K, Wiesel N, Frenkiel-Krispin D, Moeller D, Soreq E, Aebi U, Herrmann H, Gruenbaum Y, Medalia O (2009) The supramolecular organization of the C. elegans nuclear lamin filament. J Mol Biol 386(5):1392–1402. doi:10.1016/j.jmb.2008.12.024

    Article  PubMed  CAS  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD (2010a) Nuclear lamins. Cold Spring Harb Perspect Biol 2(11):a000547. doi:10.1101/cshperspect.a000547

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Gesson K, Foisner R (2010b) Lamina-independent lamins in the nuclear interior serve important functions. Cold Spring Harb Symp Quant Biol 75:533–543. doi:10.1101/sqb.2010.75.018

    Article  PubMed  CAS  Google Scholar 

  • Dhe-Paganon S, Werner ED, Chi YI, Shoelson SE (2002) Structure of the globular tail of nuclear lamin. J Biol Chem 277(20):17381–17384. doi:10.1074/jbc.C200038200

    Article  PubMed  CAS  Google Scholar 

  • Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Luhrmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 103(31):11440–11445. doi:10.1073/pnas.0604965103

    Article  PubMed  CAS  Google Scholar 

  • Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2):129–228

    Article  PubMed  CAS  Google Scholar 

  • Dwyer N, Blobel G (1976) A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J Cell Biol 70(3):581–591

    Article  PubMed  CAS  Google Scholar 

  • Eckersley-Maslin MA, Bergmann JH, Lazar Z, Spector DL (2013) Lamin A/C is expressed in pluripotent mouse embryonic stem cells. Nucleus 4(1):53–60. doi:10.4161/nucl.23384

    Article  PubMed  Google Scholar 

  • Fridman K, Mader A, Zwerger M, Elia N, Medalia O (2012) Advances in tomography: probing the molecular architecture of cells. Nat Rev Mol Cell Biol 13(11):736–742. doi:10.1038/nrm3453

    Article  PubMed  CAS  Google Scholar 

  • Gall JG, Wu Z, Murphy C, Gao H (2004) Structure in the amphibian germinal vesicle. Exp Cell Res 296(1):28–34. doi:10.1016/j.yexcr.2004.03.017

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R (2008) Filaments made from A- and B-type lamins differ in structure and organization. J Cell Sci 121(Pt 2):215–225. doi:10.1242/jcs.022020

    Article  PubMed  CAS  Google Scholar 

  • Goldman AE, Maul G, Steinert PM, Yang HY, Goldman RD (1986) Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins. Proc Natl Acad Sci USA 83(11):3839–3843

    Article  PubMed  CAS  Google Scholar 

  • Grossman E, Dahan I, Stick R, Goldberg MW, Gruenbaum Y, Medalia O (2012) Filaments assembly of ectopically expressed Caenorhabditis elegans lamin within Xenopus oocytes. J Struct Biol 177(1):113–118. doi:10.1016/j.jsb.2011.11.002

    Article  PubMed  CAS  Google Scholar 

  • Grubisha O, Kaminska M, Duquerroy S, Fontan E, Cordier F, Haouz A, Raynal B, Chiaravalli J, Delepierre M, Israel A, Veron M, Agou F (2010) DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. J Mol Biol 395(1):89–104. doi:10.1016/j.jmb.2009.10.018

    Article  PubMed  CAS  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951. doi:10.1038/nature06947

    Article  PubMed  CAS  Google Scholar 

  • Heitlinger E, Peter M, Haner M, Lustig A, Aebi U, Nigg EA (1991) Expression of chicken lamin B2 in Escherichia coli: characterization of its structure, assembly, and molecular interactions. J Cell Biol 113(3):485–495

    Article  PubMed  CAS  Google Scholar 

  • Heitlinger E, Peter M, Lustig A, Villiger W, Nigg EA, Aebi U (1992) The role of the head and tail domain in lamin structure and assembly: analysis of bacterially expressed chicken lamin A and truncated B2 lamins. J Struct Biol 108(1):74–89

    Article  PubMed  CAS  Google Scholar 

  • Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789. doi:10.1146/annurev.biochem.73.011303.073823

    Article  PubMed  CAS  Google Scholar 

  • Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM (2003) Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int Rev Cytol 223:83–175

    Article  PubMed  CAS  Google Scholar 

  • Herrmann H, Kreplak L, Aebi U (2004) Isolation, characterization, and in vitro assembly of intermediate filaments. Methods Cell Biol 78:3–24

    Article  PubMed  CAS  Google Scholar 

  • Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573. doi:10.1038/nrm2197

    Article  PubMed  CAS  Google Scholar 

  • Holmer L, Worman HJ (2001) Inner nuclear membrane proteins: functions and targeting. Cell Mol Life Sci 58(12–13):1741–1747

    Article  PubMed  CAS  Google Scholar 

  • Kapinos LE, Burkhard P, Herrmann H, Aebi U, Strelkov SV (2011) Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A. J Mol Biol 408(1):135–146. doi:10.1016/j.jmb.2011.02.037

    Article  PubMed  CAS  Google Scholar 

  • Karabinos A, Schunemann J, Meyer M, Aebi U, Weber K (2003) The single nuclear lamin of Caenorhabditis elegans forms in vitro stable intermediate filaments and paracrystals with a reduced axial periodicity. J Mol Biol 325(2):241–247

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann A, Heinemann F, Radmacher M, Stick R (2011) Amphibian oocyte nuclei expressing lamin A with the progeria mutation E145K exhibit an increased elastic modulus. Nucleus 2(4):310–319. doi:10.4161/nucl.2.4.16119

    Article  PubMed  Google Scholar 

  • Kirschner RH, Rusli M, Martin TE (1977) Characterization of the nuclear envelope, pore complexes, and dense lamina of mouse liver nuclei by high resolution scanning electron microscopy. J Cell Biol 72(1):118–132

    Article  PubMed  CAS  Google Scholar 

  • Kitten GT, Nigg EA (1991) The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2. J Cell Biol 113(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J, Batrakou DG, Malik P, Zuleger N, Kerr AR, Florens L, Schirmer EC (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3(6):552–564. doi:10.4161/nucl.22257

    Article  PubMed  Google Scholar 

  • Kreplak L, Richter K, Aebi U, Herrmann H (2008) Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy. Methods Cell Biol 88:273–297. doi:10.1016/S0091-679x(08)00415-9

    Article  PubMed  CAS  Google Scholar 

  • Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pinto Y, Misteli T (2010) Identification of differential protein interactors of lamin A and progerin. Nucleus 1(6):513–525. doi:10.4161/nucl.1.6.13512

    PubMed  Google Scholar 

  • Lin F, Worman HJ (1993) Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 268(22):16321–16326

    PubMed  CAS  Google Scholar 

  • Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11(7):769–777

    Article  PubMed  CAS  Google Scholar 

  • Loewinger L, McKeon F (1988) Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. EMBO J 7(8):2301–2309

    PubMed  CAS  Google Scholar 

  • Luderus ME, de Graaf A, Mattia E, den Blaauwen JL, Grande MA, de Jong L, van Driel R (1992) Binding of matrix attachment regions to lamin B1. Cell 70(6):949–959

    Article  PubMed  CAS  Google Scholar 

  • Mattout A, Goldberg M, Tzur Y, Margalit A, Gruenbaum Y (2007) Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. J Cell Sci 120 (Pt 1):77-85. doi:10.1242/jcs.03325

  • McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319(6053):463–468. doi:10.1038/319463a0

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Lopez I, Worman HJ (2012) Inner nuclear membrane proteins: impact on human disease. Chromosoma 121(2):153–167. doi:10.1007/s00412-012-0360-2

    Article  PubMed  CAS  Google Scholar 

  • Moir RD, Quinlan RA, Stewart M (1990) Expression and characterization of human lamin C. FEBS Lett 268(1):301–305

    Article  PubMed  CAS  Google Scholar 

  • Parry DA (2005) Microdissection of the sequence and structure of intermediate filament chains. Adv Protein Chem 70:113–142. doi:10.1016/S0065-3233(05)70005-X

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Kitten GT, Lehner CF, Vorburger K, Bailer SM, Maridor G, Nigg EA (1989) Cloning and sequencing of cDNA clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J Mol Biol 208(3):393–404

    Article  PubMed  CAS  Google Scholar 

  • Qin Z, Kalinowski A, Dahl KN, Buehler MJ (2011) Structure and stability of the lamin A tail domain and HGPS mutant. J Struct Biol 175(3):425–433. doi:10.1016/j.jsb.2011.05.015

    Article  PubMed  CAS  Google Scholar 

  • Rankin J, Ellard S (2006) The laminopathies: a clinical review. Clin Genet 70(4):261–274. doi:10.1111/j.1399-0004.2006.00677.x

    Article  PubMed  CAS  Google Scholar 

  • Rigort A, Bauerlein FJB, Villa E, Eibauer M, Laugks T, Baumeister W, Plitzko JM (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci USA 109(12):4449–4454. doi:10.1073/pnas.1201333109

    Article  PubMed  CAS  Google Scholar 

  • Ruan J, Xu C, Bian C, Lam R, Wang JP, Kania J, Min J, Zang J (2012) Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett 586(4):314–318. doi:10.1016/j.febslet.2012.01.007

    Article  PubMed  CAS  Google Scholar 

  • Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/Nmeth929

    Article  PubMed  CAS  Google Scholar 

  • Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336. doi:10.1126/science.1156947

    Article  PubMed  CAS  Google Scholar 

  • Sennhauser G, Grutter MG (2008) Chaperone-assisted crystallography with DARPins. Structure 16(10):1443–1453. doi:10.1016/j.str.2008.08.010

    Article  PubMed  CAS  Google Scholar 

  • Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T, Goldman RD (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22(24):3409–3421. doi:10.1101/gad.1735208

    Article  PubMed  CAS  Google Scholar 

  • Shumaker DK, Lopez-Soler RI, Adam SA, Herrmann H, Moir RD, Spann TP, Goldman RD (2005) Functions and dysfunctions of the nuclear lamin Ig-fold domain in nuclear assembly, growth, and Emery–Dreifuss muscular dystrophy. Proc Natl Acad Sci USA 102(43):15494–15499. doi:10.1073/pnas.0507612102

    Article  PubMed  CAS  Google Scholar 

  • Simon DN, Zastrow MS, Wilson KL (2010) Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus 1(3):264–272. doi:10.4161/nucl.1.3.11799

    Article  PubMed  Google Scholar 

  • Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M (1994) The processing pathway of prelamin A. J Cell Sci 107(Pt 1):61–67

    PubMed  CAS  Google Scholar 

  • Starger JM, Brown WE, Goldman AE, Goldman RD (1978) Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol 78(1):93–109

    Article  PubMed  CAS  Google Scholar 

  • Steinert P, Zackroff R, Aynardi-Whitman M, Goldman RD (1982) Isolation and characterization of intermediate filaments. Methods Cell Biol 24:399–419

    Article  PubMed  CAS  Google Scholar 

  • Stick R, Goldberg MW (2010) Oocytes as an experimental system to analyze the ultrastructure of endogenous and ectopically expressed nuclear envelope components by field-emission scanning electron microscopy. Methods 51(1):170–176. doi:10.1016/j.ymeth.2010.01.015

    Article  PubMed  CAS  Google Scholar 

  • Strelkov SV, Burkhard P (2002) Analysis of alpha-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. J Struct Biol 137(1–2):54–64. doi:10.1006/jsbi.2002.4454

    Article  PubMed  CAS  Google Scholar 

  • Strelkov SV, Schumacher J, Burkhard P, Aebi U, Herrmann H (2004) Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J Mol Biol 343(4):1067–1080. doi:10.1016/j.jmb.2004.08.093

    Article  PubMed  CAS  Google Scholar 

  • Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K, Erdos MR, Adam SA, Herrmann H, Medalia O, Collins FS, Goldman AE, Goldman RD (2009) A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci USA 106(49):20788–20793. doi:10.1073/pnas.0911895106

    Article  PubMed  CAS  Google Scholar 

  • Vorburger K, Lehner CF, Kitten GT, Eppenberger HM, Nigg EA (1989) A second higher vertebrate B-type lamin: cDNA sequence determination and in vitro processing of chicken lamin B2. J Mol Biol 208(3):405–415

    Article  PubMed  CAS  Google Scholar 

  • Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325. doi:10.1002/path.2999

    Article  PubMed  CAS  Google Scholar 

  • Worman HJ, Lazaridis I, Georgatos SD (1988) Nuclear lamina heterogeneity in mammalian cells. Differential expression of the major lamins and variations in lamin B phosphorylation. J Biol Chem 263(24):12135–12141

    PubMed  CAS  Google Scholar 

  • Yahav T, Maimon T, Grossman E, Dahan I, Medalia O (2011) Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 21(5):670–677. doi:10.1016/j.sbi.2011.07.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Reimer Stick for generously providing us with image material. The work is supported by a Swiss National Science Foundation grant (SNSF 31003A_141083/1) to O.M. and a postdoctoral fellowship from the German Academic Exchange Service (DAAD [D/11/44980]) to M.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohad Medalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwerger, M., Medalia, O. From lamins to lamina: a structural perspective. Histochem Cell Biol 140, 3–12 (2013). https://doi.org/10.1007/s00418-013-1104-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1104-y

Keywords

Navigation