Skip to main content
Log in

Retinol-binding protein 4 is expressed in chondrocytes of developing mouse long bones: implications for a local role in formation of the secondary ossification center

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Retinol-binding protein 4 (Rbp4) is the major carrier of retinol in the bloodstream, a retinoid whose metabolites influence osteogenesis, chondrogenesis and adipogenesis. Rbp4 is mainly produced in the liver where it mobilizes hepatic retinol stores to supply other tissues. However, Rbp4 is also expressed in several extrahepatic tissues, including limbs, where its role is largely unknown. This study aimed to identify the cellular localization of Rbp4 to gain insight into its involvement in limb development and bone growth. Using immunohistochemistry, we discovered that Rbp4 was present in a variety of locations in developing embryonic and postnatal mouse hindlimbs. Rbp4 was present in a restricted population of epiphyseal chondrocytes and perichondral cells correlating to the future region of secondary ossification. With the onset of secondary ossification, Rbp4 was detected in chondrocytes of the resting zone and in chondrocytes that bordered invading cartilage canals and the expanding front of ossification. Rbp4 was less abundant in proliferating chondrocytes involved in primary ossification. Our data implicate the involvement of chondrocytic Rbp4 in bone growth, particularly in the formation of the secondary ossification center of the limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Rbp4:

Retinol-binding protein 4

P:

Postnatal

RA:

Retinoic acid

RAR:

Retinoic acid receptor

RARE:

Retinoic acid response element

VEGF:

Vascular endothelial growth factor

References

  • Akiyama H, Tanaka T, Maeno T, Kanai H, Kimura Y, Kishi S, Kurabayashi M (2002) Induction of VEGF gene expression by retinoic acid through Sp1-binding sites in retinoblastoma Y79 cells. Invest Ophthalmol Vis Sci 43(5):1367–1374

    PubMed  Google Scholar 

  • Alvarez J, Costales L, Serra R, Balbin M, Lopez JM (2005) Expression patterns of matrix metalloproteinases and vascular endothelial growth factor during epiphyseal ossification. J Bone Miner Res 20(6):1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  PubMed  CAS  Google Scholar 

  • Binkley N, Krueger D (2000) Hypervitaminosis A and bone. Nutr Rev 58(5):138–144

    Article  PubMed  CAS  Google Scholar 

  • Blumer MJ, Longato S, Richter E, Perez MT, Konakci KZ, Fritsch H (2005) The role of cartilage canals in endochondral and perichondral bone formation: are there similarities between these two processes? J Anat 206(4):359–372

    Article  PubMed  Google Scholar 

  • Blumer MJ, Longato S, Fritsch H (2008) Structure, formation and role of cartilage canals in the developing bone. Ann Anat 190(4):305–315

    Article  PubMed  Google Scholar 

  • Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113(Pt 1):59–69

    PubMed  CAS  Google Scholar 

  • Clagett-Dame M, Knutson D (2011) Vitamin A in reproduction and development. Nutrients 3:385–428

    Article  PubMed  CAS  Google Scholar 

  • Cohen AJ, Lassova L, Golden EB, Niu Z, Adams SL (2006) Retinoids directly activate the collagen X promoter in prehypertrophic chondrocytes through a distal retinoic acid response element. J Cell Biochem 99(1):269–278

    Article  PubMed  CAS  Google Scholar 

  • Coussens AK, Wilkinson CR, Hughes IP, Morris CP, van Daal A, Anderson PJ, Powell BC (2007) Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis. BMC Genomics 8:458. doi:10.1186/1471-2164-1188-1458

    Article  PubMed  Google Scholar 

  • De Luca F, Uyeda JA, Mericq V, Mancilla EE, Yanovski JA, Barnes KM, Zile MH, Baron J (2000) Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology 141(1):346–353

    Article  PubMed  Google Scholar 

  • Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X, Shah SV, Sun D, Michalek S, Grizzle WE, Garvey T, Mobley J, Zhang HG (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58(11):2498–2505

    Article  PubMed  CAS  Google Scholar 

  • Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134(6):921–931

    Article  PubMed  CAS  Google Scholar 

  • Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628

    Article  PubMed  CAS  Google Scholar 

  • James AW, Levi B, Xu Y, Carre AL, Longaker MT (2010) Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 125(5):1352–1361

    Article  PubMed  CAS  Google Scholar 

  • Johansson S, Lind PM, Hakansson H, Oxlund H, Orberg J, Melhus H (2002) Subclinical hypervitaminosis A causes fragile bones in rats. Bone 31(6):685–689

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315(5813):820–825

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi R, Zhong M, Kassai M, Ter-Stepanian M, Sun H (2012) STRA6-catalyzed vitamin A influx, efflux, and exchange. J Membr Biol 245(11):731–745

    Google Scholar 

  • Kawashima-Ohya Y, Kuruta Y, Yan W, Kawamoto T, Noshiro M, Kato Y (1999) Retinol-binding protein is produced by rabbit chondrocytes and responds to parathyroid hormone (PTH)/PTH-related peptide-cyclic adenosine monophosphate pathway. Endocrinology 140(3):1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T (2005) Retinol-binding protein gene is highly expressed in higher-order association areas of the primate neocortex. Cereb Cortex 15(1):96–108

    Article  PubMed  Google Scholar 

  • Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM, Iwamoto M, Enomoto-Iwamoto M, Pacifici M (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316(1):62–73

    Article  PubMed  CAS  Google Scholar 

  • Lee ER, Lamplugh L, Davoli MA, Beauchemin A, Chan K, Mort JS, Leblond CP (2001) Enzymes active in the areas undergoing cartilage resorption during the development of the secondary ossification center in the tibiae of rats ages 0–21 days: I. Two groups of proteinases cleave the core protein of aggrecan. Dev Dyn 222(1):52–70

    Article  PubMed  CAS  Google Scholar 

  • Leitch VD, Dwivedi PP, Anderson PJ, Powell BC (2012) Retinol-binding protein 4 downregulation during osteogenesis and its localization to non-endocytic vesicles in human cranial suture mesenchymal cells suggest a novel tissue function. Histochem Cell Biol. doi:10.1007/s00418-012-1011-7

    PubMed  Google Scholar 

  • Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40(1):46–62

    Article  PubMed  CAS  Google Scholar 

  • Makover A, Soprano DR, Wyatt ML, Goodman DS (1989) Localization of retinol-binding protein messenger RNA in the rat kidney and in perinephric fat tissue. J Lipid Res 30(2):171–180

    PubMed  CAS  Google Scholar 

  • Martin P (1990) Tissue patterning in the developing mouse limb. Int J Dev Biol 34(3):323–336

    PubMed  CAS  Google Scholar 

  • Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268(5213):1039–1041

    Article  PubMed  CAS  Google Scholar 

  • Munkhtulga L, Nagashima S, Nakayama K, Utsumi N, Yanagisawa Y, Gotoh T, Omi T, Kumada M, Zolzaya K, Lkhagvasuren T, Kagawa Y, Fujiwara H, Hosoya Y, Hyodo M, Horie H, Kojima M, Ishibashi S, Iwamoto S (2010) Regulatory SNP in the RBP4 gene modified the expression in adipocytes and associated with BMI. Obes (Silver Spring) 18(5):1006–1014

    Article  CAS  Google Scholar 

  • Napoli JL (2011) Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta 1821(1):162–167

    Google Scholar 

  • Petersen W, Tsokos M, Pufe T (2002) Expression of VEGF121 and VEGF165 in hypertrophic chondrocytes of the human growth plate and epiphyseal cartilage. J Anat 201(2):153–157

    Article  PubMed  CAS  Google Scholar 

  • Quadro L, Blaner WS, Hamberger L, Novikoff PM, Vogel S, Piantedosi R, Gottesman ME, Colantuoni V (2004) The role of extrahepatic retinol binding protein in the mobilization of retinoid stores. J Lipid Res 45(11):1975–1982

    Article  PubMed  CAS  Google Scholar 

  • Rabe K, Lehrke M, Parhofer KG, Broedl UC (2008) Adipokines and insulin resistance. Mol Med 14(11–12):741–751

    PubMed  CAS  Google Scholar 

  • Sidell N, Feng Y, Hao L, Wu J, Yu J, Kane MA, Napoli JL, Taylor RN (2010) Retinoic acid is a cofactor for translational regulation of vascular endothelial growth factor in human endometrial stromal cells. Mol Endocrinol 24(1):148–160

    Article  PubMed  CAS  Google Scholar 

  • Simsa S, Hasdai A, Dan H, Ornan EM (2007) Differential regulation of MMPs and matrix assembly in chicken and turkey growth-plate chondrocytes. Am J Physiol Regul Integr Comp Physiol 292(6):R2216–R2224

    Article  PubMed  CAS  Google Scholar 

  • Soprano DR, Soprano KJ (1995) Retinoids as teratogens. Annu Rev Nutr 15:111–132

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Amano T, Satoh T, Saito D, Yonei-Tamura S, Yajima H (2003) Expression of rigf, a member of avian VEGF family, correlates with vascular patterning in the developing chick limb bud. Mech Dev 120(2):199–209

    Article  PubMed  CAS  Google Scholar 

  • Tickle C (2003) Patterning systems—from one end of the limb to the other. Dev Cell 4(4):449–458

    Article  PubMed  CAS  Google Scholar 

  • von Schroeder HP, Heersche JN (1998) Retinoic acid responsiveness of cells and tissues in developing fetal limbs evaluated in a RAREhsplacZ transgenic mouse model. J Orthop Res 16(3):355–364

    Article  Google Scholar 

  • Williams JA, Kane M, Okabe T, Enomoto-Iwamoto M, Napoli JL, Pacifici M, Iwamoto M (2010) Endogenous retinoids in mammalian growth plate cartilage: analysis and roles in matrix homeostasis and turnover. J Biol Chem 285(47):36674–36681

    Article  PubMed  CAS  Google Scholar 

  • Wolbach SB (1947) Vitamin-A deficiency and excess in relation to skeletal growth. J Bone Joint Surg Am 29(1):171–192

    PubMed  CAS  Google Scholar 

  • Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356–362

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara R, Yuasa T, Williams JA, Byers SW, Shah S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2010) Wnt/beta-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover. J Biol Chem 285(1):317–327

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NHMRC, Women’s and Children’s Hospital Research Foundation, the Australian CranioMaxilloFacial Foundation and the Harwood Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry C. Powell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatfield, J.T., Anderson, P.J. & Powell, B.C. Retinol-binding protein 4 is expressed in chondrocytes of developing mouse long bones: implications for a local role in formation of the secondary ossification center. Histochem Cell Biol 139, 727–734 (2013). https://doi.org/10.1007/s00418-012-1062-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1062-9

Keywords

Navigation