Skip to main content

Advertisement

Log in

The role of PKCε-dependent signaling for cardiac differentiation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Protein kinase Cepsilon (PKCε) exerts a well-known cardio-protective activity in ischemia–reperfusion injury and plays a pivotal role in stem cell proliferation and differentiation. Although many studies have been performed on physiological and morphological effects of PKCε mis-expression in cardiomyocytes, molecular information on the role of PKCε on early cardiac gene expression are still lacking. We addressed the molecular role of PKCε in cardiac cells using mouse cardiomyocytes and rat bone marrow mesenchymal stem cells. We show that PKCε is modulated in cardiac differentiation producing an opposite regulation of the cardiac genes NK2 transcription factor related, locus 5 (nkx2.5) and GATA binding protein 4 (gata4) both in vivo and in vitro. Phospho-extracellular regulated mitogen-activated protein kinase 1/2 (p-ERK1/2) levels increase in PKCε over-expressing cells, while pkcε siRNAs produce a decrease in p-ERK1/2. Indeed, pharmacological inhibition of ERK1/2 rescues the expression levels of both nkx2.5 and gata4, suggesting that a reinforced (mitogen-activated protein kinase) MAPK signaling is at the basis of the observed inhibition of cardiac gene expression in the PKCε over-expressing hearts. We demonstrate that PKCε is critical for cardiac cell early gene expression evidencing that this protein is a regulator that has to be fine tuned in precursor cardiac cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam Young D, Dequach JA, Christman KL (2011) Human cardiomyogenesis and the need for systems biology analysis. Wiley Interdiscip Rev Syst Biol Med 3:666–680

    Article  PubMed  Google Scholar 

  • Basu A, Sivaprasad U (2007) Protein Kinase Cepsilon makes the life and death decision. Cell Signal 19:1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG (2001) A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721

    Article  PubMed  CAS  Google Scholar 

  • Budas GR, Churchill EN, Disatnik MH, Sun L, Mochly-Rosen D (2010) Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res 88:83–92

    Article  PubMed  CAS  Google Scholar 

  • Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A, Biben C, Zoellner H, Colvin EK, Pimanda JE, Biankin AV, Zhou B, Pu WT, Prall OW, Harvey RP (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–540

    Article  PubMed  CAS  Google Scholar 

  • De Luca A, Sargiacomo M, Puca A, Sgaramella G, De Paolis P, Frati G, Morisco C, Trimarco B, Volpe M, Condorelli G (2000) Characterization of caveolae from rat heart: localization of postreceptor signal transduction molecules and their rearrangement after norepinephrine stimulation. J Cell Biochem 77:529–539

    Article  PubMed  Google Scholar 

  • Duquesnes N, Lezoualc’h F, Crozatier B (2011) PKC-delta and PKC-epsilon: foes of the same family or strangers? J Mol Cell Cardiol 51:665–673

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K (2003) Regeneration of cardiomyocytes from bone marrow: use of mesenchymal stem cell for cardiovascular tissue engineering. Cytotechnology 41:165–175

    Article  PubMed  CAS  Google Scholar 

  • Galli D, Benedetti L, Bongio M, Maliardi V, Silvani G, Ceccarelli G, Ronzoni F, Conte S, Benazzo F, Graziano A, Papaccio G, Sampaolesi M, De Angelis MG (2011) In vitro osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on poly-l-lysine-treated titanium-6-aluminium-4-vanadium. J Biomed Mater Res A 97:118–126

    PubMed  Google Scholar 

  • Gao LR, Zhang NK, Bai J, Ding QA, Wang ZG, Zhu ZM, Fei YX, Yang Y, Xu RY, Chen Y (2010) The apelin-APJ pathway exists in cardiomyogenic cells derived from mesenchymal stem cells in vitro and in vivo. Cell Transplant 19:949–958

    Article  PubMed  Google Scholar 

  • Garcia-Paramio P, Cabrerizo Y, Bornancin F, Parker PJ (1998) The broad specificity of dominant inhibitory protein kinase C mutants infers a common step in phosphorylation. Biochem J 333:631–636

    PubMed  CAS  Google Scholar 

  • Gobbi G, Mirandola P, Sponzilli I, Micheloni C, Malinverno C, Cocco L, Vitale M (2007) Timing and expression level of protein kinase C epsilon regulate the megakaryocytic differentiation of human CD34 cells. Stem Cells 25:2322–2329

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Marcantonio DD, Micheloni C, Carubbi C, Galli D, Vaccarezza M, Bucci G, Vitale M, Mirandola P (2012) Trail up-regulation must be accompanied by a reciprocal PKCε down-regulation during differentiation of colonic epithelial cell: implications for colorectal cancer cell differentiation. J Cell Physiol 227:630–638

    Article  PubMed  CAS  Google Scholar 

  • Goldspink PH, Montgomery DE, Walker LA, Urboniene D, McKinney RD, Geenen DL, Solaro RJ, Buttrick PM (2004) Protein kinase Cepsilon overexpression alters myofilament properties and composition during the progression of heart failure. Circ Res 95:424–432

    Article  PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  • Huang XP, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD, Li RK (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429

    Article  PubMed  CAS  Google Scholar 

  • Ivaska J, Vuoriluoto K, Huovinen T, Izawa I, Inagaki M, Parker PJ (2005) PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J 24:3834–3845

    Article  PubMed  CAS  Google Scholar 

  • Joggerst SJ, Hatzopoulos AK (2009) Stem cell therapy for cardiac repair: benefits and barriers. Expert Rev Mol Med 11:e20

    Article  PubMed  Google Scholar 

  • Kim HS, Cho JW, Hidaka K, Morisaki T (2007) Activation of MEK-ERK by heregulin-beta1 promotes the development of cardiomyocytes derived from ES cells. Biochem Biophys Res Commun 361:732–738

    Article  PubMed  CAS  Google Scholar 

  • Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A, Podewski E, Hilfiker A, Schröder F, Leitges M, Drexler H (2005) Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCepsilon. Circ Res 96:748–755

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J, Alfieri CM, Yutzey KE (2006) BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol 292:292–302

    Article  PubMed  Google Scholar 

  • Lopez-Sanchez C, Climent V, Schoenwolf GC, Alvarez IS, Garcia-Martinez V (2002) Induction of cardiogenesis by Hensen’s node and fibroblast growth factors. Cell Tissue Res 309:237–249

    Article  PubMed  CAS  Google Scholar 

  • Marni F, Wang Y, Morishima M, Shimaoka T, Uchino T, Zheng M, Kaku T, Ono K (2009) 17β-Estradiol modulates expression of low-voltage-activated Cav3.2 T-Type calcium channel via extracellularly regulated kinase pathway in cardiomyocytes. Endocrinology 150:879–888

    Article  PubMed  CAS  Google Scholar 

  • Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    Article  PubMed  Google Scholar 

  • Meyer KD, Zhang H, Zhang L (2009) Prenatal cocaine exposure abolished ischemic preconditioning-induced protection in adult male rat hearts: role of PKCepsilon. Am J Physiol Heart Circ Physiol 296:H1566–H1576

    Article  PubMed  CAS  Google Scholar 

  • Mirandola P, Gobbi G, Ponti C, Sponzilli I, Cocco L, Vitale M (2006) PKCepsilon controls protection against TRAIL in erythroid progenitors. Blood 107:508–513

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Wu G, Hahn H, Osinska H, Liron T, Lorenz JN, Yatani A, Robbins J, Dorn GW 2nd (2000) Cardiotrophic effects of protein kinase C epsilon: analysis by in vivo modulation of PKCepsilon translocation. Circ Res 86:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D (2007) Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol 43:754–766

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2003) Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 7(Suppl 3):86–88

    Article  PubMed  Google Scholar 

  • Qian Q, Qian H, Zhang X, Zhu W, Yan Y, Ye S, Peng X, Li W, Xu Z, Sun L, Xu W (2012) 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev 21:67–75

    Article  PubMed  CAS  Google Scholar 

  • Redig AJ, Platanias LC (2007) The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J Interferon Cytokine Res 27:623–636 Review

    Article  PubMed  CAS  Google Scholar 

  • Saurin AT, Durgan J, Cameron AJ, Faisal A, Marber MS, Parker PJ (2008) The regulated assembly of a PKCepsilon complex controls the completion of cytokinesis. Nat Cell Biol 10:891–901

    Article  PubMed  CAS  Google Scholar 

  • Snyder M, Huang XY, Zhang JJ (2010) Stat3 directly controls the expression of Tbx5, Nkx2.5, and GATA4 and is essential for cardiomyocyte differentiation of P19CL6 cells. J Biol Chem 285:23639–23646

    Article  PubMed  CAS  Google Scholar 

  • Sperling SR (2011) Systems biology approaches to heart development and congenital heart disease. Cardiovasc Res 91:269–278

    Article  PubMed  CAS  Google Scholar 

  • Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA (2000) Transgenic overexpression of constitutively active protein kinase Cε causes concentric cardiac hypertrophy. Circ Res 86:1218–1223

    Article  PubMed  CAS  Google Scholar 

  • Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, Domany E, Tzahor E (2010) BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 137:2989–3000

    Article  PubMed  CAS  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cristina Micheloni, Luciana Cerasuolo, Vincenzo Palermo and Davide Dallatana for technical help. This work was supported by Programma di ricerca Regione Emilia-Romagna-Università (ER-Università) 2007–2009 Therapeutic application of stem cells in the treatment of heart failure and Finanziamento Italiano per la Ricerca di Base (FIRB) RBAP10KCNS_002.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vitale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, D., Gobbi, G., Carrubbi, C. et al. The role of PKCε-dependent signaling for cardiac differentiation. Histochem Cell Biol 139, 35–46 (2013). https://doi.org/10.1007/s00418-012-1022-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1022-4

Keywords

Navigation