Skip to main content
Log in

Divergent regulation of Wnt-mediated development of the dorsomedial and ventrolateral dermomyotomal lips

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The dermomyotome is the dorsal compartment of the somite which gives rise to multiple cell fates including skeletal muscle, connective tissue, and endothelia. It consists of a pseudostratified, roughly rectangular epithelial sheet, the margins of which are called the dermomyotomal lips. The dermomyotomal lips are blastema-like epithelial growth zones, which continuously give rise to resident dermomyotomal cells and emigrating muscle precursor cells, which populate the subjacent myotomal compartment. Wnt signaling has been shown to regulate both dermomyotome formation and maintenance of the dermomyotomal lips. Whereas the epithelialization of the dermomyotome is regulated via canonical, β-catenin-dependent Wnt signaling, the downstream signaling mechanisms suppressing epithelial–mesenchymal transition (EMT) in the mature dermomyotomal lips have been unknown. Here, we present evidence that dermomyotomal lip sustainment is differentially regulated. Whereas the dorsomedial dermomyotomal lip is maintained by canonical Wnt signaling, development of the ventrolateral dermomyotomal lip is regulated by non-canonical, PCP-like Wnt signaling. We discuss our results in the light of the different developmental prerequisites in the dorsomedial and ventrolateral lips, respectively, thus providing a new perspective on the regulation of dermomyotomal EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown AM, Evans DJ, Francis-West P (2003) Wnt signalling regulates myogenic differentiation in the developing avian wing. Development 130:3503–3514

    Article  PubMed  CAS  Google Scholar 

  • Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, Herrmann BG (2003) Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4:395–406

    Article  PubMed  CAS  Google Scholar 

  • Brauner I, Spicer DB, Krull CE, Venuti JM (2010) Identification of responsive cells in the developing somite supports a role for beta-catenin-dependent Wnt signalling in maintaining the DML myogenic progenitor pool. Dev Dyn 239:222–236

    PubMed  CAS  Google Scholar 

  • Brunelli S, Relaix F, Baesso S, Buckingham M, Cossu G (2007) Beta-catenin independent activation of Myo D in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Dev Biol 304:604–614

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396

    Article  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Experimentelle Untersuchungen zur Entwicklung der Brustwand beim Hühnerembryo. Experientia 30:1449–1451

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1978) On the formation of the myotome in avian embryos. An experimental and scanning electron microscopy study. Experientia 34:514–516

    Article  Google Scholar 

  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A (2003) Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of beta-catenin signalling, Slug, and MAPK. J Cell Biol 163:847–857

    Article  PubMed  CAS  Google Scholar 

  • Delfini MC, De La Celle M, Gros J, Serralbo O, Marics I, Seux M, Scaal M, Marcelle C (2009) The timing of emergence of muscle progenitors is controlled by an FGF/ERK/SNAIL1 pathway. Dev Biol 333:229–237

    Article  PubMed  CAS  Google Scholar 

  • Duband JL, Dufour S, Hatta K, Takeichi M, Edelman GM, Thiery JP (1987) Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 104:1361–1374

    Article  PubMed  CAS  Google Scholar 

  • Geetha-Loganathan P, Nimmagadda S, Huang R, Christ B, Scaal M (2006) Regulation of ectodermal Wnt6 expression by the neural tube is transduced by dermomyotomal Wnt11: a mechanism of dermomyotomal lip sustainment. Development 133:2897–2904

    Article  PubMed  CAS  Google Scholar 

  • Gradl D, Kuhl M, Wedlich D (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19:5576–5587

    PubMed  CAS  Google Scholar 

  • Gros J, Scaal M, Marcelle C (2004) A two-step mechanism for myotome formation in chick. Dev Cell 6:875–882

    Article  PubMed  CAS  Google Scholar 

  • Gros J, Serralbo O, Marcelle C (2009) WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 457:589–593

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81

    Article  PubMed  CAS  Google Scholar 

  • Heuberger J, Birchmeier W (2010) Interplay of cadherin-mediated cell adhesion and canonical Wnt signalling. Cold Spring Harb Perspect Biol 2:a002915

    Article  PubMed  Google Scholar 

  • Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T (2004) Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer 108:321–326

    Article  PubMed  CAS  Google Scholar 

  • Howe LR, Watanabe O, Leonard J, Brown AM (2003) Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res 63:1906–1913

    PubMed  CAS  Google Scholar 

  • Krylova O, Messenger MJ, Salinas PC (2000) Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3beta. J Cell Biol 151:83–94

    Article  PubMed  CAS  Google Scholar 

  • Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C (2005) Beta-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 132:3895–3905

    Article  PubMed  CAS  Google Scholar 

  • Mittapalli VR, Huang R, Patel K, Christ B, Scaal M (2005) Arthrotome: a specific joint forming compartment in the avian somite. Dev Dyn 234:48–53

    Article  PubMed  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signalling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  PubMed  CAS  Google Scholar 

  • Moustakas A, Heldin CH (2007) Signalling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520

    Article  PubMed  CAS  Google Scholar 

  • Nakaya M, Kitano M, Matsuda M, Nagata S (2008) Spatiotemporal activation of Rac1 for engulfment of apoptotic cells. Proc Natl Acad Sci USA 105:9198–9203

    Article  PubMed  CAS  Google Scholar 

  • Nieto MA, Patel K, Wilkinson DG (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235

    Article  PubMed  CAS  Google Scholar 

  • Nowicki JL, Takimoto R, Burke AC (2003) The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech Dev 120:227–240

    Article  PubMed  CAS  Google Scholar 

  • Ordahl CP, Berdougo E, Venters SJ, Denetclaw WF Jr (2001) The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium. Development 128:1731–1744

    PubMed  CAS  Google Scholar 

  • Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R (2006) Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133:151–161

    Article  PubMed  CAS  Google Scholar 

  • Rios AC, Denans N, Marcelle C (2010) Real-time observation of Wnt beta-catenin signalling in the chick embryo. Dev Dyn 239:346–353

    Article  PubMed  CAS  Google Scholar 

  • Roman-Roman S, Shi DL, Stiot V, Hay E, Vayssiere B, Garcia T, Baron R, Rawadi G (2004) Murine Frizzled-1 behaves as an antagonist of the canonical Wnt/beta-catenin signalling. J Biol Chem 279:5725–5733

    Article  PubMed  CAS  Google Scholar 

  • Roszko I, Sawada A, Solnica-Krezel L (2009) Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20:986–997

    Article  PubMed  CAS  Google Scholar 

  • Rothbacher U, Laurent MN, Deardorff MA, Klein PS, Cho KW, Fraser SE (2000) Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J 19:1010–1022

    Article  PubMed  CAS  Google Scholar 

  • Saad S, Stanners SR, Yong R, Tang O, Pollock CA (2010) Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. Int J Biochem Cell Biol 42:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Scaal M, Christ B (2004) Formation and differentiation of the avian dermomyotome. Anat Embryol (Berl) 208:411–424

    Article  Google Scholar 

  • Scaal M, Gros J, Lesbros C, Marcelle C (2004) In ovo electroporation of avian somites. Dev Dyn 229:643–650

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Stoeckelhuber M, McKinnell I, Putz R, Christ B, Patel K (2004) Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation. Dev Biol 271:198–209

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, McGonnell IM, Allen S, Otto A, Patel K (2007) Wnt6 controls amniote neural crest induction through the non-canonical signalling pathway. Dev Dyn 236:2502–2511

    Article  PubMed  CAS  Google Scholar 

  • Shearman RM, Burke AC (2009) The lateral somitic frontier in ontogeny and phylogeny. J Exp Zool B Mol Dev Evol 312:603–612

    Article  PubMed  Google Scholar 

  • Sosic D, Brand-Saberi B, Schmidt C, Christ B, Olson EN (1997) Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 185:229–243

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Kai M (2009) Noncanonical Wnt/PCP signalling during vertebrate gastrulation. Zebrafish 6:29–40

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    PubMed  CAS  Google Scholar 

  • Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Sato Y (2008) Somitogenesis as a model to study the formation of morphological boundaries and cell epithelialization. Dev Growth Differ 50(Suppl 1):S149–S155

    Article  PubMed  CAS  Google Scholar 

  • Theodosiou NA, Tabin CJ (2003) Wnt signalling during development of the gastrointestinal tract. Dev Biol 259:258–271

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  • Vallin J, Thuret R, Giacomello E, Faraldo MM, Thiery JP, Broders F (2001) Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/beta-catenin signalling. J Biol Chem 276:30350–30358

    Article  PubMed  CAS  Google Scholar 

  • van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signalling in development. Development 136:3205–3214

    Article  PubMed  Google Scholar 

  • Vladar EK, Antic D, Axelrod JD (2009) Planar cell polarity signalling: the developing cell’s compass. Cold Spring Harb Perspect Biol 1:a002964

    Article  PubMed  Google Scholar 

  • Wada H, Okamoto H (2009) Roles of noncanonical Wnt/PCP pathway genes in neuronal migration and neurulation in zebrafish. Zebrafish 6:3–8

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405:81–85

    Article  PubMed  CAS  Google Scholar 

  • Wiggan O, Hamel PA (2002) Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signalling cascade. J Cell Sci 115:531–541

    PubMed  CAS  Google Scholar 

  • Wiggan O, Fadel MP, Hamel PA (2002) Pax3 induces cell aggregation and regulates phenotypic mesenchymal-epithelial interconversion. J Cell Sci 115:517–529

    PubMed  CAS  Google Scholar 

  • Williams BA, Ordahl CP (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120:785–796

    PubMed  CAS  Google Scholar 

  • Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP (2010) Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2. Am J Pathol 176:2247–2258

    Google Scholar 

  • Zilberberg A, Yaniv A, Gazit A (2004) The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signalling pathway. J Biol Chem 279:17535–17542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Marianne Bronner-Fraser, Philippa Francis-West, Christophe Marcelle, Eric Olson, Guojun Sheng, Cliff Tabin, and Patricia Salinas for sharing material, Bodo Christ for critical reading of the manuscript, and Ute Baur, Lidia Koschny, Günter Frank and Ellen Gimbel for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft, SFB592-A1 to M.S., and the European NoE Myores to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Scaal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2012_971_MOESM1_ESM.pptx

Schematic representation of the electroporation procedure used to transfect dermomyotomal lip cells. Note that the position of the electrodes (+ and −) is merely diagrammed to visualise the electric current flow. In the experimental setup both electrodes are positioned on top of the ectoderm by manual bending of the embryo (see Scaal et al. 2004 for details). Electroporation of DML precursor cells in the dorsomedial (prospective DML, a) or dorsolateral (prospective VLL, b) quadrant of the epithelial somite (solid green). Plasmid solution (hatched green) is injected into the somitocoele. Electroporation of mature DML (c) and VLL (d), both coloured by solid green. Plasmid solution (hatched green) is injected into the sub-lip domain underneath the corresponding dermomyotomal lip. Supplementary material 1 (PPTX 98 kb)

418_2012_971_MOESM2_ESM.pdf

Control electroporations using solely a GFP reporter vector to demonstrate that a successful electroporation procedure alone does not specifically alter dermomyotomal morphology. Panels from left to right expression of the GFP reporter in overview, in situ hybridization showing Pax3-expression in the same embryo in overview, in situ hybridization showing Pax3-expression in the same embryo in detail, vibratome section through the electroporated region showing in situ hybridization for Pax3, paraffine section through the electroporated region showing immunohistochemical localization of the epithelial marker Connexin43, paraffine section showing immunohistochemical localization of the GFP reporter in the same section. Electroporation at HH-stages 14–15 (epithelial somites) and 16–17 (mature somites), reincubation 24 h. af Electroporation of GFP in DML precursor cells in the epaxial dorsal quadrant of an epithelial somite does not specifically alter the morphology of the DML. gl Electroporation of GFP in VLL precursor cells in the hypaxial dorsal quadrant of an epithelial somite does not specifically alter the morphology of the VLL. mr Electroporation of GFP in mature DML cells does not specifically alter the morphology of the DML. sx Electroporation of GFP in mature VLL cells does not specifically alter the morphology of the VLL. Scale bar 150 μm. Supplementary material 2 (PDF 168 kb)

418_2012_971_MOESM3_ESM.pdf

In situ hybridizations for various members of Wnt signalling pathways in the dermomyotome of chicken embryos. Transversal sections at the level of an intermediate stage dermomyotome, dorsal to the top, axial organs to the left. Note that the canonical downstream effector beta-catenin is expressed mainly in the DML (a), whereas the non-canonical downstream component Prickle1 is expressed in the myotome and in the VLL (b). Mutually exclusive expression pattern of Frizzled receptors, as Frizzled1 is expressed in the VLL (c), whereas Frizzled7 is expressed in the DML (d). Scale bar 150 μm. Supplementary material 3 (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krück, S., Scaal, M. Divergent regulation of Wnt-mediated development of the dorsomedial and ventrolateral dermomyotomal lips. Histochem Cell Biol 138, 503–514 (2012). https://doi.org/10.1007/s00418-012-0971-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0971-y

Keywords

Navigation