Skip to main content

Advertisement

Log in

Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Novel sulphation motifs within the glycosaminoglycan chain structure of chondroitin sulphate (CS) containing proteoglycans (PGs) are associated with sites of growth, differentiation and repair in many biological systems and there is compelling evidence that they function as molecular recognition sites that are involved in the binding, sequestration or presentation of soluble signalling molecules (e.g. morphogens, growth factors and cytokines). Here, using monoclonal antibodies 3B3(−), 4C3 and 7D4, we examine the distribution of native CS sulphation motifs within the developing connective tissues of the human foetal knee joint, both during and after joint cavitation. We show that the CS motifs have broad, overlapping distributions within the differentiating connective tissues before the joint has fully cavitated; however, after cavitation, they all localise very specifically to the presumptive articular cartilage tissue. Comparisons with the labelling patterns of heparan sulphate (HS), HS-PGs (perlecan, syndecan-4 and glypican-6) and FGF-2, molecules with known signalling roles in development, indicate that these also become localised to the future articular cartilage tissue after joint cavitation. Furthermore, they display interesting, overlapping distributions with the CS motifs, reflective of early tissue zonation. The overlapping expression patterns of these molecules at this site suggests they are involved, or co-participate, in early morphogenetic events underlying articular cartilage formation; thus having potential clinical relevance to mechanisms involved in its repair/regeneration. We propose that these CS sulphation motifs are involved in modulating the signalling gradients responsible for the cellular behaviours (proliferation, differentiation, matrix turnover) that shape the zonal tissue architecture present in mature articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arai T, Parker A, Walker B, Clemmons DR (1994) Heparan, heparan sulphate, and dermatan sulphate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J Biol Chem 269:20388–20393

    PubMed  CAS  Google Scholar 

  • Archer CW, Morrison H, Pitsillides AA (1994) Cellular aspects of the development of diarthroidal joints and articular cartilage. J Anat 184:447–456

    PubMed  Google Scholar 

  • Archer CW, Morrison EA, Bayliss MT, Ferguson MWJ (1996) The development of articular cartilage: II. The spatial and temporal patterns of glycosaminoglycans and small-leucine-rich proteoglycans. J Anat 189:23–35

    PubMed  CAS  Google Scholar 

  • Archer CW, Dowthwaite GP, Francis-West P (2003) Development of synovial joints. Birth Defects Res (Part C) 69:144–155

    Article  CAS  Google Scholar 

  • Asimakopoulou AP, Thecharis AD, Tzanakakis GN, Karamanos NK (2008) The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo 22:385–389

    PubMed  CAS  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface proteoglycans. Annu Rev Biochem 68:729–777

    Article  PubMed  CAS  Google Scholar 

  • Bishop JR, Schukz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Campos-Xavier AB, Martinet D, Bateman J, Belluoccio D, Rowley L, Tan TY, Baxová A, Borochowitz ZU, Innes AM, Unger S, Beckmann JS, Mittaz L, Ballhausen D, Superti-Furga A, Savarirayan R, Bonafé L (2009) Mutations in the heparan-sulfate proteoglycan glypican 6 (GPC6) impair endochondral ossification and cause recessive omodysplasia. Am J Hum Genet 84:760–770

    Article  PubMed  CAS  Google Scholar 

  • Caterson B, Mahmoodian F, Sorrell JM, Hardingham TE, Mayliss MT, Carney SL, Ratcliffe A, Muir H (1990) Modulation of native chondroitin sulphate structure in tissue development and in disease. J Cell Sci 97:411–417

    PubMed  CAS  Google Scholar 

  • Chen X, Macica CM, Nasiri A, Broadus AE (2008) Regulation of articular chondrocyte proliferation and differentiation by Indian hedgehog and parathyroid hormone-related protein in mice. Arthritis Rheum 58:3788–3797

    Article  PubMed  Google Scholar 

  • Cortes M, Baria AT, Schwartz NB (2009) Sulfation of chondroitin sulphate proteoglycans is necessary for proper Indian hedgehog signalling in the developing growth plate. Development 136:1697–1706

    Article  PubMed  CAS  Google Scholar 

  • Couchman JR, Caterson B, Christner JE, Baker JR (1984) Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature 307:650–665

    Article  PubMed  CAS  Google Scholar 

  • David G, Bai XM, Van der Schueren B, Cassiman JJ, Van den Berge H (1992) Developmental changes in heparan sulfate expression: in situ detection with mAbs. J Cell Biol 119:961–975

    Article  PubMed  CAS  Google Scholar 

  • Deepa SS, Yamada S, Zako M, Goldberger O, Sugahara K (2004) Chondroitin sulphate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulphate chains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor. J Biol Chem 36:37368–37376

    Article  Google Scholar 

  • Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJR, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117:889–897

    Article  PubMed  CAS  Google Scholar 

  • Echtermeyer F, Bertrand J, Dreier R, Ingmar M, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G, Pap T (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15:1072–1076

    Article  PubMed  CAS  Google Scholar 

  • Fico A, Maina F, Dono R (2011) Fine-tuning of cell signalling by glypicans. Cell Mol Life Sci 68:923–929

    Article  PubMed  CAS  Google Scholar 

  • Fisher MC, Li Y, Seghatoleslami MR, Dealy CN, Kosher RA (2006) Heparan sulphate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol 25:27–39

    Article  PubMed  CAS  Google Scholar 

  • Francis-West PH, Parish J, Lee K, Archer CW (1999) BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res 296:111–119

    Article  PubMed  CAS  Google Scholar 

  • Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA, Nishi A, Hsieh-Wilson LC (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2:467–473

    Article  PubMed  CAS  Google Scholar 

  • Gardner E, O’Rahilly R (1968) The early development of the knee joint in staged human embryos. J Anat 102:289–299

    PubMed  CAS  Google Scholar 

  • Govindraj P, West L, Koob TJ, Neame P, Doege K, Hassell JR (2002) Isolation and identification of the major heparan sulphate proteoglycans in the developing bovine rib growth plate. J Biol Chem 277:19461–19469

    Article  PubMed  CAS  Google Scholar 

  • Govindraj P, West L, Smith S, Hassell JR (2006) Modulation of FGF-2 binding to chondrocytes from the developing growth plate by perlecan. Matrix Biol 25:232–239

    Article  PubMed  CAS  Google Scholar 

  • Guerne PA, Sublet A, Lotz M (1994) Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol 158:476–484

    Article  PubMed  CAS  Google Scholar 

  • Hardingham T (1994) The sulphation pattern in chondroitin sulphate chains investigated by chondroitinase ABC and ACII digestion and reactivity with monoclonal antibodies. Carbohydrate Res 255:241–254

    Article  CAS  Google Scholar 

  • Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 203:469–479

    Article  CAS  Google Scholar 

  • Hayes AJ, Dowthwaite GP, Webster SV, Archer CW (2003) The distribution of Notch receptors and their ligands during articular cartilage development. J Anat 202:495–502

    Article  PubMed  CAS  Google Scholar 

  • Hayes AJ, Tudor D, Nowell MA, Caterson B, Hughes CE (2008) Chondroitin sulphate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J Histochem Cytochem 56:125–138

    Article  PubMed  CAS  Google Scholar 

  • Hayes AJ, Hughes CE, Ralphs JR, Caterson B (2011) Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc. Eur Cell Mater 21:1–14

    PubMed  CAS  Google Scholar 

  • Hill DJ, Logan A (1992) Peptide growth factors and their interactions during chondrogenesis. Prog Growth Factor Res 4:45–68

    Article  PubMed  CAS  Google Scholar 

  • Horowitz A, Tkachenko E, Simons M (2002) Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol 157:715–725

    Article  PubMed  CAS  Google Scholar 

  • Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP (2000) Indian Hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127:543–548

    PubMed  CAS  Google Scholar 

  • Kavanagh E, Church VL, Osbourne AC, Lamb KJ, Archer CW, Francis-West PH, Pitsillides AA (2006) Differential regulation of GDF-5 and FGF-2/4 by immobilisation in ovo exposes distinct roles in joint formation. Dev Dyn 235:826–834

    Article  PubMed  CAS  Google Scholar 

  • Khan IM, Evans SL, Young RD, Blain EJ, Quantock AJ, Avery N, Archer CW (2011) Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis Rheum 63:3417–3427

    Article  PubMed  CAS  Google Scholar 

  • Kirsch T, Koyama E, Liu M, Golub EE, Pacifici M (2002) Syndecan-3 is a selective regulator of chondrocyte proliferation. J Biol Chem 277:42171–42177

    Article  PubMed  CAS  Google Scholar 

  • Kosher RA (1998) Syndecan-3 in limb skeletal development. Microsc Res Tech 43:123–130

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg HM (2006) PTHrP and skeletal development. Ann NY Acad Sci 1068:1–13

    Article  PubMed  CAS  Google Scholar 

  • Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CLR, Dierks T (2007) The heparanome—the enigma of encoding and decoding heparan sulphate sulfation. J Biotech 129:290–307

    Article  CAS  Google Scholar 

  • Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LH, Ho C, Mulligan RC, Abou-Samra AB, Juppner H, Degre GV, Kronenberg HM (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–666

    Article  PubMed  CAS  Google Scholar 

  • LeClair EE, Mui SR, Huang A, Topczewska JM, Topczewski J (2009) Craniofacial skeletal defects of adult zebrafish glypican 4 (knypek) mutants. Dev Dyn 238:2550–2563

    Article  PubMed  Google Scholar 

  • Luan Y, Praul CA, Gay CV, Leach RM (1996) Basic fibroblast growth factor: an autocrine growth factor for epiphyseal growth plate chondrocytes. J Cell Biochem 62:372–382

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J (2006) The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem 281:36905–36914

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Hayes AJ, Whitelock JM, Little CB (2008a) Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. BioEssays 30:457–469

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Smith SM, Smith MM, Little CB (2008b) The use of Histochoice for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotech Histochem 83:47–53

    Article  PubMed  CAS  Google Scholar 

  • Mérida-Velasco JA, Sánchez-Montesinos I, Espín-Ferra J, Mérida-Velasco JR, Rodríguez-Vázquez JF, Jiménez-Collado J (1997a) Development of the human knee joint ligaments. Anat Rec 248:259–268

    Article  PubMed  Google Scholar 

  • Mérida-Velasco JA, Sánchez-Montesinos I, Espín-Ferra J, Rodríguez-Vázquez JF, Mérida-Velasco JR, Jiménez-Collado J (1997b) Development of the human knee joint. Anat Rec 248:269–278

    Article  PubMed  Google Scholar 

  • Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M (2011) Synovial joint formation requires local EXT1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 351:70–81

    Article  PubMed  CAS  Google Scholar 

  • O’Rahilly R (1951) The early prenatal development of the human knee joint. J Anat 85:166–170

    PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1987) Developmental stages in human embryos. Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Ornitz DM (2000) FGFs, heparan sulphate and FGFRs: complex interactions essential for development. BioEssays 22:108–112

    Article  PubMed  CAS  Google Scholar 

  • Otsuki S, Taniguchi N, Grogan SP, D’Lima D, Kinoshita M, Lotz M (2008) Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic cartilage. Arthritis Res Therapy 10:R61

    Article  Google Scholar 

  • Pacifici M, Koyama E, Iwamoto M, Gentili C (2000) Development of articular cartilage: what do we know about it and how may it occur? Connect Tissue Res 41:175–184

    Article  PubMed  CAS  Google Scholar 

  • Pacifici M, Koyama E, Iwamoto M (2005a) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res (Part C) 75:237–248

    Article  CAS  Google Scholar 

  • Pacifici M, Shimo T, Gentili C, Kirsch T, Freeman TA, Enomoto-Iwamoto M, Iwamoto M, Koyama E (2005b) Syndecan-3: a cell surface heparan sulphate proteoglycan important for chondrocyte proliferation and function during limb skeletogenesis. J Bone Miner Metab 23:191–199

    Article  PubMed  CAS  Google Scholar 

  • Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, Iwamoto M (2006) Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci 1068:74–86

    Article  PubMed  CAS  Google Scholar 

  • Pain-Saunders S, Viviano BL, Zupicich J, Skarnes WC, Saunders S (2000) Glypican-3 controls cellular responses to BMP-4 in limb patterning and skeletal development. Dev Biol 225:179–187

    Article  Google Scholar 

  • Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 391:S26–S33

    Article  PubMed  Google Scholar 

  • Powell AK, Yates EA, Fernig DG, Turnbull JE (2004) Interactions of heparin/heparan sulfate with proteins: appraisal of structural features and experimental approaches. Glycobiology 14:17–30

    Article  Google Scholar 

  • Purushothaman A, Sugahara K, Faissner A (2011) Chondroitin sulfate wobble motifs modulate the maintenance and differentiation of neural stem cells and their progeny. J Biol Chem [Epub ahead of print]

  • Ratajczak W (2000) Early development of the cruciate ligaments in staged human embryos. Folia Morphol 59:285–290

    CAS  Google Scholar 

  • Reddi AH (2011) Cartilage morphogenetic proteins: role in joint development, homeostasis, and regeneration. Ann Rheum Dis 62:73–78

    Google Scholar 

  • Rider CC (2006) Heparin/heparan sulphate binding in the TGF-beta cytokine family. Biochem Soc Trans 34:458–460

    Article  PubMed  CAS  Google Scholar 

  • Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM (2004) BMP receptor signalling is required for postnatal maintenance of articular cartilage. PLoS Biol 2:e355

    Article  PubMed  Google Scholar 

  • Sassi N, Laadhar L, Driss M, Kallel-Sellami M, Sellami S, Makni S (2011) The role of the Notch pathway in healthy and osteoarthritic articular cartilage: from experimental models to ex vivo studies. Arthritis Res Therapy 13:208

    Article  CAS  Google Scholar 

  • Shimazu A, Nah HD, Kirsch T, Koyama E, Leatherman JL, Golden EB, Kosher RA, Pacifici M (1996) Syndecan-3 and the control of chondrocyte proliferation during endochondral ossification. Exp Cell Res 229:126–136

    Article  PubMed  CAS  Google Scholar 

  • Shimo T, Gentili C, Iwamoto M, Wu C, Koyama E, Pacifici M (2004) Indian hedgehog and syndecan-3 coregulate chondrocyte proliferation and function during chick limb skeletogenesis. Dev Dyn 229:607–617

    Article  PubMed  CAS  Google Scholar 

  • Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Götz M, Faissner A (2010) Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 28:775–787

    Article  PubMed  CAS  Google Scholar 

  • Smith SML, West LA, Govindraj P, Zhang X, Ornitz DM, Hassell JR (2007) Heparan and chondroitin sulfate on growth plate perlecan mediate biding and delivery of FGF-2 to FGF receptors. Matrix Biol 26:175–184

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Shu C, Melrose J (2010) Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem Cell Biol 134:251–263

    Article  PubMed  CAS  Google Scholar 

  • Sorrell JM, Caterson B (1989) Detection of age-related changes in the distribution of keratan sulfates and chondroitin sulfates in developing chick limbs: an immunocytochemical study. Development 106:657–663

    PubMed  CAS  Google Scholar 

  • Sorrell JM, Lintala AM, Mahmoodian F, Caterson B (1988) Epitope-specific changes in chondroitin sulphate/dermatan sulphate proteoglycans as markers in the lymphopoietic and granulopoietic compartments of developing bursae of Fabricius. J Immunol 140:4263–4270

    PubMed  CAS  Google Scholar 

  • Sorrell JM, Mahmoodian F, Schafer IA, Davis B, Caterson B (1990) Identification of monoclonal antibodies that recognize novel epitopes in native chondroitin/dermatan sulphate glycosaminoglycan chains: their use in mapping functionally distinct domains of human skin. J Histochem Cytochem 38:393–402

    Article  PubMed  CAS  Google Scholar 

  • Sorrell JM, Carrino DA, Caplan AI (1996) Regulated expression of chondroitin sulfates at sites of epithelial–mesenchymal interaction: spatio-temporal patterning identified with anti-chondroitin sulphate monoclonal antibodies. Int J Dev Neurosci 14:233–248

    Article  CAS  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signalling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086

    Article  PubMed  CAS  Google Scholar 

  • Tkachenko E, Rhodes JM, Simons M (2005) Syndecans. New kids on the signalling block. Circ Res 96:488–500

    Article  PubMed  CAS  Google Scholar 

  • Trippel SB, Wroblewski J, Makower AM, Whelan MC, Schoenfeld D, Doctrow SR (1993) Regulation of growth-plate chondrocytes by insulin-like growth factor and basic fibroblast growth factor. J Bone Jt Surg Am 75:177–189

    CAS  Google Scholar 

  • Tumova S, Woods A, Couchman JR (2000) Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol 32:269–288

    Article  PubMed  CAS  Google Scholar 

  • van den Born J, Salmivirta K, Henttinen T, Östman N, Ishimaru T, Miyaura S, Yoshida K, Salmivirta M (2005) Novel heparan sulphate structures revealed by monoclonal antibodies. J Biol Chem 280:20516–20523

    Article  PubMed  Google Scholar 

  • Veugelers M, De Cat B, Ceulemans H, Bruystens A-M, Coomans C, Durr J, Vermeesch J, Marynen P, David G (1999) Glypican-6, a new member of the glypican family of cell surface heparin sulphate proteoglycans. J Biol Chem 274:26968–26977

    Article  PubMed  CAS  Google Scholar 

  • Vincent TL, McLean CJ, Full LE, Peston D, Saklatvala J (2007) FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage 15:752–763

    Article  PubMed  CAS  Google Scholar 

  • Visco DM, Johnstone B, Hill MA, Jolly GA, Caterson B (1993) Immunohistochemical analysis of 3B3(-) and 7D4 epitope expression in canine osteoarthritis. Arthritis Rheum 36:1718–1725

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Green RP, Zhao G, Ornitz DM (2001) Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development 128:3867–3876

    PubMed  CAS  Google Scholar 

  • Whitelock J, Melrose J (2011) Heparan sulfate proteoglycans in healthy and diseased systems. Wiley Interdiscip Rev Syst Biol Med 3:739–751

    Article  PubMed  CAS  Google Scholar 

  • Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW (2010) Identification and clonal characteristics of a progenitor cell sub-population in normal human articular cartilage. PLoS ONE 5:e13246

    Article  PubMed  Google Scholar 

  • Yan D, Lin X (2009) Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect Biol 1:a002493

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Drs. Mari Nowell (Cardiff School of Medicine), Hannah Shaw and Jim Ralphs (Cardiff School of Biosciences), for help in the anatomy of the foetal human knee. This work was funded with financial support from the Arthritis Research UK (ARUK grant numbers 18331 and 19858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melrose, J., Isaacs, M.D., Smith, S.M. et al. Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem Cell Biol 138, 461–475 (2012). https://doi.org/10.1007/s00418-012-0968-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0968-6

Keywords

Navigation