Skip to main content
Log in

Colocalization in vivo and association in vitro of perlecan and elastin

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We have colocalized elastin and fibrillin-1 with perlecan in extracellular matrix of tensional and weight-bearing connective tissues. Elastin and fibrillin-1 were identified as prominent components of paraspinal blood vessels, and posterior longitudinal ligament in the human fetal spine and outer annulus fibrosus of the fetal intervertebral disc. We also colocalized perlecan with a synovial elastic basal lamina, where the attached synovial cells were observed to produce perlecan. Elastin, fibrillin-1 and perlecan were co-localized in the intima and media of small blood vessels in the synovium and in human fetal paraspinal blood vessels. Elastic fibers were observed at the insertion point of the anterior cruciate ligament to bone in the ovine stifle joint where they colocalized with perlecan. Elastin has not previously been reported to be spatially associated with perlecan in these tissues. Interactions between the tropoelastin and perlecan heparan sulfate chains were demonstrated using quartz crystal microbalance with dissipation solid phase binding studies. Electrostatic interactions through the heparan sulfate chains of perlecan and core protein mediated the interactions with tropoelastin, and were both important in the coacervation of tropoelastin and deposition of elastin onto perlecan immobilized on the chip surface. This may help us to understand the interactions which are expected to occur in vivo between the tropoelastin and perlecan to facilitate the deposition of elastin and formation of elastic microfibrils in situ and would be consistent with the observed distributions of these components in a number of connective tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akhtar K, Broekelmann TJ, Song H, Turk J, Brett TJ, Mecham RP, Adair-Kirk TL (2011) Oxidative Modifications of the C-terminal Domain of Tropoelastin Prevent Cell Binding. J Biol Chem 286:13574–13582

    Article  PubMed  CAS  Google Scholar 

  • Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM (2007) Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 120:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Bix G, Iozzo RV (2008) Novel interactions of perlecan: Unraveling perlecan’s role in angiogenesis. Microsc Res Tech 71:339–348

    Article  PubMed  CAS  Google Scholar 

  • Broekelmann TJ, Kozel BA, Ishibashi H, Werneck CC, Keeley FW, Zhang L, Mecham RP (2005) Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal domain. J Biol Chem 280:40939–40947

    Article  PubMed  CAS  Google Scholar 

  • Brown-Augsburger P, Broekelmann T, Mecham L, Mercer R, Gibson MA, Cleary EG, Abrams WR, Rosenbloom J, Mecham RP (1994) Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. J Biol Chem 269:28443–28449

    PubMed  CAS  Google Scholar 

  • Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS, Shuttleworth CA, Kielty CM (2005) Fibrillin-1 interactions with heparin: implications for microfibril and elastic fiber assembly. J Biol Chem 280:30526–30537

    Article  PubMed  CAS  Google Scholar 

  • Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR, Kielty CM (2008) Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem 283:27017–27027

    Article  PubMed  CAS  Google Scholar 

  • Caldini EG, Caldini N, De-Pasquale V, Strocchi R, Guizzardi S, Ruggeri A, Montes GS (1990) Distribution of elastic system fibres in the rat tail tendon and its associated sheaths. Acta Anat (Basel) 139:341–348

    Article  CAS  Google Scholar 

  • Carta L, Wagenseil JE, Knutsen RH, Mariko B, Faury G, Davis EC, Starcher B, Mecham RP, Ramirez F (2009) Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb Vasc Biol 29:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Cetta G, Tenni R, Zanaboni G, De Luca G, Ippolito E, De Martino C, Castellani AA (1982) Biochemical and morphological modifications in rabbit Achilles tendon during maturation and ageing. Biochem J 204:61–67

    PubMed  CAS  Google Scholar 

  • Clarke AW, Wise SG, Cain SA, Kielty CM, Weiss AS (2005) Coacervation is promoted by molecular interactions between the PF2 segment of fibrillin-1 and the domain 4 region of tropoelastin. Biochemistry 44:10271–10281

    Article  PubMed  CAS  Google Scholar 

  • Clarke AW, Arnspang EC, Mithieux SM, Korkmaz E, Braet F, Weiss AS (2006) Tropoelastin massively associates during coacervation to form quantized protein spheres. Biochemistry 45:9989–9996

    Article  PubMed  CAS  Google Scholar 

  • Cleary EG, Sandberg LB, Jackson DS (1967) The changes in chemical composition during development of the bovine nuchal ligament. J Cell Biol 33:469–479

    Article  PubMed  CAS  Google Scholar 

  • Costell M, Carmona R, Gustafsson E, Gonzalez-Iriarte M, Fassler R, Munoz-Chapuli R (2002) Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ Res 91:158–164

    Article  PubMed  CAS  Google Scholar 

  • Couchman JR, Ljubimov AV (1989) Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies. Matrix 9:311–321

    PubMed  CAS  Google Scholar 

  • Couchman JR, Caterson B, Christner JE, Baker JR (1984) Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature 307:650–652

    Article  PubMed  CAS  Google Scholar 

  • Czirok A, Zach J, Kozel BA, Mecham RP, Davis EC, Rongish BJ (2006) Elastic fiber macro-assembly is a hierarchical, cell motion-mediated process. J Cell Physiol 207:97–106

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho HF, Lino Neto J, Taboga SR (1994) Microfibrils: neglected components of pressure-bearing tendons. Ann Anat 176:155–159

    PubMed  Google Scholar 

  • Dodge GR, Boesler EW, Jimenez SA (1995) Expression of the basement membrane heparan sulfate proteoglycan (perlecan) in human synovium and in cultured human synovial cells. Lab Invest 73:649–657

    PubMed  CAS  Google Scholar 

  • Fuki IV, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan: a novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275:25742–25750

    Article  PubMed  CAS  Google Scholar 

  • Fukuda Y, Ferrans VJ, Crystal RG (1984) Development of elastic fibers of nuchal ligament, aorta, and lung of fetal and postnatal sheep: an ultrastructural and electron microscopic immunohistochemical study. Am J Anat 170:597–629

    Article  PubMed  CAS  Google Scholar 

  • Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, Pasquali Ronchetti I (2005) Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol 24:15–25

    Article  PubMed  CAS  Google Scholar 

  • Greenlee TK Jr, Pike D (1971) Studies of tendon healing in the rat: remodeling of the distal stump after severance. Plast Reconstr Surg 48:260–270

    Article  PubMed  Google Scholar 

  • Grosso LE, Scott M (1993) Peptide sequences selected by BA4, a tropoelastin-specific monoclonal antibody, are ligands for the 67-kilodalton bovine elastin receptor. Biochemistry 32:13369–13374

    Article  PubMed  CAS  Google Scholar 

  • Hayes AJ, Smith SM, Gibson MA, Melrose J (2011) Comparative immunolocalisation of the elastin fibre associated proteins fibrillin-1, LTBP2 and MAGP-1 with components of the collagenous and proteoglycan matrix of the foetal human IVD. Spine (Phila Pa 1976)

  • Henderson M, Polewski R, Fanning JC, Gibson MA (1996) Microfibril-associated glycoprotein-1 (MAGP-1) is specifically located on the beads of the beaded-filament structure for fibrillin-containing microfibrils as visualized by the rotary shadowing technique. J Histochem Cytochem 44:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Hirani R, Hanssen E, Gibson MA (2007) LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol 26:213–223

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi Y, Couchman JR, Ljubimov AV, Yamasaki H, Fine JD (1989) Distribution, ultrastructural localization, and ontogeny of the core protein of a heparan sulfate proteoglycan in human skin and other basement membranes. J Histochem Cytochem 37:961–970

    Article  PubMed  CAS  Google Scholar 

  • Hubmacher D, Tiedemann K, Reinhardt DP (2006) Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol 75:93–123

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (1994) Perlecan: a gem of a proteoglycan. Matrix Biol 14:203–208

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 6:646–656

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355

    PubMed  CAS  Google Scholar 

  • Iozzo RV, Cohen IR, Grassel S, Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302(Pt 3):625–639

    PubMed  CAS  Google Scholar 

  • Ippolito E, Natali PG, Postacchini F, Accinni L, De Martino C (1980) Morphological, immunochemical, and biochemical study of rabbit achilles tendon at various ages. J Bone Joint Surg Am 62:583–598

    PubMed  CAS  Google Scholar 

  • Jordan CD, Charbonneau NL, Sakai LY (2006) Fibrillin microfibrils: connective tissue pathways that regulate shape and signaling. J Musculoskelet Neuronal Interact 6:366–367

    PubMed  CAS  Google Scholar 

  • Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, van der Merwe PA, Mardon HJ, Handford PA (2007) alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem 282:6743–6751

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic J, Iqbal S, Jensen S, Mardon H, Handford P (2008) Fibrillin-integrin interactions in health and disease. Biochem Soc Trans 36:257–262

    Article  PubMed  CAS  Google Scholar 

  • Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10:312–320

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA (2002a) Fibrillin: from microfibril assembly to biomechanical function. Philos Trans R Soc Lond B Biol Sci 357:207–217

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002b) Elastic fibres. J Cell Sci 115:2817–2828

    PubMed  CAS  Google Scholar 

  • Kielty CM, Wess TJ, Haston L, Ashworth JL, Sherratt MJ, Shuttleworth CA (2002c) Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motil 23:581–596

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Sherratt MJ, Marson A, Baldock C (2005) Fibrillin microfibrils. Adv Protein Chem 70:405–436

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Stephan S, Sherratt MJ, Williamson M, Shuttleworth CA (2007) Applying elastic fibre biology in vascular tissue engineering. Philos Trans R Soc Lond B Biol Sci 362:1293–1312

    Article  PubMed  CAS  Google Scholar 

  • Knox S, Melrose J, Whitelock J (2001) Electrophoretic, biosensor, and bioactivity analyses of perlecans of different cellular origins. Proteomics 1:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Sheridan R, Yarmush ML (2011) Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A 108:1034–1039

    Article  PubMed  CAS  Google Scholar 

  • Kozel BA, Rongish BJ, Czirok A, Zach J, Little CD, Davis EC, Knutsen RH, Wagenseil JE, Levy MA, Mecham RP (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207:87–96

    Article  PubMed  CAS  Google Scholar 

  • Lim DW, Nettles DL, Setton LA, Chilkoti A (2008) In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 9:222–230

    Article  PubMed  CAS  Google Scholar 

  • Ljubimov AV, Bartek J, Couchman JR, Kapuller LL, Veselov VV, Kovarik J, Perevoshchikov AG, Krutovskikh VA (1992) Distribution of individual components of basement membrane in human colon polyps and adenocarcinomas as revealed by monoclonal antibodies. Int J Cancer 50:562–566

    Article  PubMed  CAS  Google Scholar 

  • Maier A, McDaniels CN, Mayne R (1994) Fibrillin and elastin networks in extrafusal tissue and muscle spindles of bovine extraocular muscles. Invest Ophthalmol Vis Sci 35:3103–3110

    PubMed  CAS  Google Scholar 

  • Mariko B, Ghandour Z, Raveaud S, Quentin M, Usson Y, Verdetti J, Huber P, Kielty C, Faury G (2010) Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am J Physiol Cell Physiol 299:C977–C987

    Article  PubMed  CAS  Google Scholar 

  • Mariko B, Pezet M, Escoubet B, Bouillot S, Andrieu JP, Starcher B, Quaglino D, Jacob MP, Huber P, Ramirez F, Faury G (2011) Fibrillin-1 genetic deficiency leads to pathological ageing of arteries in mice. J Pathol 224:33–44

    Article  PubMed  CAS  Google Scholar 

  • Martin SL, Vrhovski B, Weiss AS (1995) Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. Gene 154:159–166

    Article  PubMed  CAS  Google Scholar 

  • McGowan SE, Holmes AJ, Mecham RP, Ritty TM (2008) Arg-Gly-Asp-containing domains of fibrillins-1 and -2 distinctly regulate lung fibroblast migration. Am J Respir Cell Mol Biol 38:435–445

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Smith S, Ghosh P (2004) Histological and immunohistological studies on cartilage. Methods Mol Med 101:39–63

    PubMed  Google Scholar 

  • Melrose J, Smith S, Cake M, Read R, Whitelock J (2005a) Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol 123:561–571

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Smith S, Cake M, Read R, Whitelock J (2005b) Spatial and temporal immunolocalisation of perlecan in the ovine meniscus. Histochem Cell Biol 124:225–235

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J (2006) The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem 281:36905–36914

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Hayes AJ, Whitelock JM, Little CB (2008a) Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 30:457–469

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Smith SM, Smith MM, Little CB (2008b) The use of Histochoice for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotech Histochem 83:47–53

    Article  PubMed  CAS  Google Scholar 

  • Midwood KS, Schwarzbauer JE (2002) Elastic fibers: building bridges between cells and their matrix. Curr Biol 12:R279–R281

    Article  PubMed  CAS  Google Scholar 

  • Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20:15–27

    Article  PubMed  CAS  Google Scholar 

  • Murdoch AD, Iozzo RV (1993) Perlecan: the multidomain heparan sulphate proteoglycan of basement membrane and extracellular matrix. Virchows Arch A Pathol Anat Histopathol 423:237–242

    Article  PubMed  CAS  Google Scholar 

  • Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV (1994) Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem 42:239–249

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka D, Tsukise A, Meyer W (2001) Ultracytochemistry of glycosaminoglycans in the canine knee synovium. Ann Anat 183:229–236

    Article  PubMed  CAS  Google Scholar 

  • Pillarisetti S (2000) Lipoprotein modulation of subendothelial heparan sulfate proteoglycans (perlecan) and atherogenicity. Trends Cardiovasc Med 10:60–65

    Article  PubMed  CAS  Google Scholar 

  • Ramirez F, Dietz HC (2007) Fibrillin-rich microfibrils: structural determinants of morphogenetic and homeostatic events. J Cell Physiol 213:326–330

    Article  PubMed  CAS  Google Scholar 

  • Ramirez F, Dietz HC (2009) Extracellular microfibrils in vertebrate development and disease processes. J Biol Chem 284:14677–14681

    Article  PubMed  CAS  Google Scholar 

  • Ramirez F, Sakai LY, Rifkin DB, Dietz HC (2007) Extracellular microfibrils in development and disease. Cell Mol Life Sci 64:2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Ramirez F, Carta L, Lee-Arteaga S, Liu C, Nistala H, Smaldone S (2008) Fibrillin-rich microfibrils: structural and instructive determinants of mammalian development and physiology. Connect Tissue Res 49:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ritty TM, Ditsios K, Starcher BC (2002) Distribution of the elastic fiber and associated proteins in flexor tendon reflects function. Anat Rec 268:430–440

    Article  PubMed  CAS  Google Scholar 

  • Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7:1208–1218

    PubMed  CAS  Google Scholar 

  • Rossi A, Gabbrielli E, Villano M, Messina M, Ferrara F, Weber E (2010) Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis. J Anat 217:705–714

    Article  PubMed  Google Scholar 

  • Sasaki T, Gohring W, Miosge N, Abrams WR, Rosenbloom J, Timpl R (1999) Tropoelastin binding to fibulins, nidogen-2 and other extracellular matrix proteins. FEBS Lett 460:280–284

    Article  PubMed  CAS  Google Scholar 

  • Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJ, Shuttleworth CA, Wess TJ, Kielty CM (2003) Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol 332:183–193

    Article  PubMed  CAS  Google Scholar 

  • Stephan S, Ball SG, Williamson M, Bax DV, Lomas A, Shuttleworth CA, Kielty CM (2006) Cell-matrix biology in vascular tissue engineering. J Anat 209:495–502

    Article  PubMed  CAS  Google Scholar 

  • Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276:36035–36042

    Article  PubMed  CAS  Google Scholar 

  • Tiedemann K, Sasaki T, Gustafsson E, Gohring W, Batge B, Notbohm H, Timpl R, Wedel T, Schlotzer-Schrehardt U, Reinhardt DP (2005) Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem 280:11404–11412

    Article  PubMed  CAS  Google Scholar 

  • Toonkool P, Regan DG, Kuchel PW, Morris MB, Weiss AS (2001) Thermodynamic and hydrodynamic properties of human tropoelastin. Analytical ultracentrifuge and pulsed field-gradient spin-echo NMR studies. J Biol Chem 276:28042–28050

    Article  PubMed  CAS  Google Scholar 

  • Tsuruga E, Sato A, Ueki T, Nakashima K, Nakatomi Y, Ishikawa H, Yajima T, Sawa Y (2009) Integrin alphavbeta3 regulates microfibril assembly in human periodontal ligament cells. Tissue Cell 41:85–89

    Article  PubMed  CAS  Google Scholar 

  • Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta 59:391–396

    Article  CAS  Google Scholar 

  • Wagenseil JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 81:229–240

    Article  PubMed  CAS  Google Scholar 

  • Whitelock JM (2002) Purification of perlecan from endothelial cells. In Proteoglycan Protocols: current methods and applications Humana Press, Totowa

  • Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105:2745–2764

    Article  PubMed  CAS  Google Scholar 

  • Whitelock JM, Graham LD, Melrose J, Murdoch AD, Iozzo RV, Underwood PA (1999) Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol 18:163–178

    Article  PubMed  CAS  Google Scholar 

  • Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183

    Article  PubMed  CAS  Google Scholar 

  • Williamson MR, Shuttleworth A, Canfield AE, Black RA, Kielty CM (2007) The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment. Biomaterials 28:5307–5318

    Article  PubMed  CAS  Google Scholar 

  • Wise SG, Weiss AS (2009) Tropoelastin. Int J Biochem Cell Biol 41:494–497

    Article  PubMed  CAS  Google Scholar 

  • Wrenn DS, Griffin GL, Senior RM, Mecham RP (1986) Characterization of biologically active domains on elastin: identification of a monoclonal antibody to a cell recognition site. Biochemistry 25:5172–5176

    Article  PubMed  CAS  Google Scholar 

  • Wu WJ, Vrhovski B, Weiss AS (1999) Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J Biol Chem 274:21719–21724

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Cheng J, Hao N, Takagi R, Jimi S, Itabe H, Saku T (2004) Basement membrane-type heparan sulfate proteoglycan (perlecan) and low-density lipoprotein (LDL) are co-localized in granulation tissues: a possible pathogenesis of cholesterol granulomas in jaw cysts. J Oral Pathol Med 33:177–184

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F (1994) Structure and expression of fibrillin-1, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by NHMRC Project Grant 512167 to JM and JW, Grant support was also received by ASW from the Australian Research Council and the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Melrose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, A.J., Lord, M.S., Smith, S.M. et al. Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol 136, 437–454 (2011). https://doi.org/10.1007/s00418-011-0854-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0854-7

Keywords

Navigation