Skip to main content
Log in

Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASC:

Adipose-derived stem cell(s)

ATF:

Activating transcription factor

bCM:

Basic culture medium

BMSC:

Bone marrow-derived mesenchymal stromal (stem) cells

cAMP:

Cyclic adenosine monophosphate

CREB:

cAMP response element-binding protein

CREM:

cAMP response element modulator

ESC:

Embryonic stem cells

IBMX:

Isobutylmethylxanthine

NID:

Neurogenic induction medium

SVF:

Stromal vascular fraction

References

  • Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA et al (2003) In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111:1922–1931

    Article  PubMed  Google Scholar 

  • Baptist M, Dumont JE, Roger PP (1993) Demonstration of cell cycle kinetics in thyroid primary culture by immunostaining of proliferating cell nuclear antigen: differences in cyclic AMP- dependent and -independent mitogenic stimulations. J Cell Sci 105:69–80

    CAS  PubMed  Google Scholar 

  • Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J (2006) The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 20(24):3475–3486

    Article  CAS  PubMed  Google Scholar 

  • Bertani N, Malatesta P, Volpi G, Sonego P, Perris R (2005) Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci 118:3925–3936

    Article  CAS  PubMed  Google Scholar 

  • Boquest AC, Shahdadfar A, Frønsdal K, Sigurjonsson O, Tunheim SH, Collas P et al (2005) Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Cho YM, Jang YS, Jang YM, Chung SM, Kim HS, Lee JH et al (2009) Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med 41(6):440–452

    Article  CAS  PubMed  Google Scholar 

  • Cramer LP, Mitchison TJ (1997) Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol Biol Cell 8:109–119

    CAS  PubMed  Google Scholar 

  • da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  Google Scholar 

  • de la Fuente R, Abad JL, Garcia-Castro J, Fernandez-Miguel G, Petriz J, Rubio D et al (2004) Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Exp Cell Res 297:313–328

    Article  PubMed  Google Scholar 

  • Dvory-Sobol H, Cohen-Noyman E, Kazanov D, Figer A, Birkenfeld S, Madar-Shapiro L et al (2006) Celecoxib leads to G2/M arrest by induction of p21 and downregulation of cyclin B1 expression in a p53-independent manner. Eur J Cancer 42:422–426

    Article  CAS  PubMed  Google Scholar 

  • Fujimura J, Ogawa R, Mizuno H, Fukunaga Y, Suzuki H (2005) Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun 333:116–121

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B et al (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237

    Article  CAS  PubMed  Google Scholar 

  • Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R et al (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84:1663–1670

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422

    Article  CAS  PubMed  Google Scholar 

  • Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow-derived stem cells. Blood 102:3483–3493

    Article  CAS  PubMed  Google Scholar 

  • Hirsch J, Batchelor B (1976) Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 5:299–311

    Article  CAS  PubMed  Google Scholar 

  • Hogan MR, Cockram GP, Lu R (2006) Cooperative interaction of Zhangfei and ATF4 in transactivation of the cyclic AMP response element. FEBS Lett 580:58–62

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Milligan G (1997) Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci 22:217–224

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzales XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Kamiya K, Sakakibara K, Ryer EJ, Hom RP, Leof EB, Kent KC et al (2007) Phosphorylation of the cyclic AMP response element binding protein mediates transforming growth factor beta-induced downregulation of cyclin A in vascular smooth muscle cells. Mol Cell Biol 27:3489–3498

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K et al (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22:139–153

    Article  CAS  PubMed  Google Scholar 

  • Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183:355–366

    Article  CAS  PubMed  Google Scholar 

  • Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A et al (2004) Neurogenesis of rhesus adipose stromal cells. J Cell Sci 117:4289–4299

    Article  CAS  PubMed  Google Scholar 

  • Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH (2006) Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells 15:583–594

    Article  CAS  Google Scholar 

  • Kayahara T, Sawada M, Takaishi S, Fukui H, Seno H, Fukuzawa H et al (2003) Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett 535:131–135

    Article  CAS  PubMed  Google Scholar 

  • Leong DT, Khor WM, Chew FT, Lim TC, Hutmacher DW (2006) Characterization of osteogenically induced adipose tissue-derived precursor cells in 2-dimensional and 3-dimensional environments. Cells Tissues Organs 182:1–11

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Xie Y, Lou L (2005) Cyclic AMP inhibition of proliferation of hepatocellular carcinoma cells is mediated by Akt. Cancer Biol Ther 4:1240–1247

    CAS  PubMed  Google Scholar 

  • López-Lluch G, Fernández-Ayala DJ, Alcaín FJ, Burón MI, Quesada JM, Navas P (2005) Inhibition of COX activity by NSAIDs or ascorbate increases cAMP levels and enhances differentiation in 1α, 25-dihydroxyvitamin D3-induced HL-60 cells. Arch Biochem Biophys 436:32–39

    Article  PubMed  Google Scholar 

  • Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artefact? J Neurosci Res 77:174–191

    Article  CAS  PubMed  Google Scholar 

  • Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals neuronal lineage. Development 127:5253–5263

    CAS  PubMed  Google Scholar 

  • Mo Z, Moore AR, Filipovic R, Ogawa Y, Kazuhiro I, Antic SD et al (2007) Human cortical neurons originate from radial glia and neuron-restricted progenitors. J Neurosci 15:4132–4145

    Article  Google Scholar 

  • Montzka K, Lassonczyk N, Tschöke B, Neuss S, Führmann T, Franzen R et al (2009) Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 10:16

    Google Scholar 

  • Moreels M, Vandenabeele F, Deryck L, Lambrichts I (2005) Radial glial cells derived from the neonatal rat spinal cord: morphological and immunocytochemical characterization. Arch Histol Cytol 68:361–369

    Article  PubMed  Google Scholar 

  • Nagase T, Matsumoto D, Nagase M, Yoshimura K, Shigeura T, Inouge M et al (2007) Neurospheres from human adipose tissue transplanted into cultured mouse embryos can contribute to craniofacial morphogenesis: a preliminary report. J Craniofac Surg 18:49–53

    Article  PubMed  Google Scholar 

  • Nègre N, Ghysen A, Martinez AM (2003) Mitotic G2-arrest is required for neural cell fate determination in Drosophila. Mech Dev 120:253–265

    Article  PubMed  Google Scholar 

  • Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77:192–204

    Article  CAS  PubMed  Google Scholar 

  • Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C et al (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20:1511–1524

    Article  CAS  PubMed  Google Scholar 

  • Niles LP, Armstrong KJ, Rincón Castro LM, Dao CV, Sharma R, McMillan CR et al (2004) Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MTI receptor with neuronal and glial markers. BMC Neurosci 5:41

    Article  PubMed  Google Scholar 

  • Ning H, Lin G, Lue TF, Lin C (2006) Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation 74:510–518

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306:349–356

    Article  CAS  PubMed  Google Scholar 

  • Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Article  PubMed  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM et al (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  CAS  PubMed  Google Scholar 

  • Safford KM, Safford SD, Ginmble JM, Shetty AK, Rice HE (2004) Characterization of neural/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol 187:319–328

    Article  CAS  PubMed  Google Scholar 

  • Scintu F, Reali C, Pillai R, Badiali M, Sanna MA, Argiolu F et al (2006) Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments. BMC Neurosci 7:14

    Article  PubMed  Google Scholar 

  • Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J et al (2008) Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. Mod Pathol 21(5):505–516

    Article  CAS  PubMed  Google Scholar 

  • Tholpady SS, Katz AJ, Ogle RC (2003) Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec A Discov Mol Cell Evol Biol 272:398–402

    Article  CAS  PubMed  Google Scholar 

  • Tonchev AB, Yamashima T, Sawamoto K, Okano H (2005) Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. J Neurosci Res 81:776–788

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7):RESEARCH0034. [Epub 2002 Jun 18]

    Google Scholar 

  • Zuk PA (2004) International Fat Applied Technology Society. Pittsburgh, PA, USA. Consensus Statement

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors especially would like to thank R. Gehrcke and T. Jansen for their support.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Michael Kompisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kompisch, K.M., Lange, C., Steinemann, D. et al. Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations. Histochem Cell Biol 134, 453–468 (2010). https://doi.org/10.1007/s00418-010-0740-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0740-8

Keywords

Navigation