Skip to main content
Log in

High expression and activity of ecto-5′-nucleotidase/CD73 in the male murine reproductive tract

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those requiring contraction, steroidogenesis, and maintenance of fluid composition. Interestingly, adenosine might act as a key capacitative effector for mammalian spermatozoa to acquire the capacity for fertilisation. Extracellular nucleotide levels are affected by cell surface ectonucleotidases, amongst which the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family regroups the most abundant and effective enzymes to hydrolyse ATP and ADP to AMP in physiological conditions. In the male reproductive tract three members of this family have been indentified: NTPDase1, NTPDase2 and NTPDase3 (Martín-Satué et al. in Histochem Cell Biol 131:615–628, 2009). The purpose of the present study was to characterize in the male reproductive tract the expression profile of the main enzyme responsible for the generation of adenosine from AMP, namely the ecto-5′-nucleotidase (CD73). The enzyme was identified by immunological techniques and by in situ enzymatic assays, including inhibition experiments with α,β-methylene-ADP, a specific CD73 inhibitor. High levels of ecto-5′-nucleotidase were detected in testes in association with both germinal and somatic cells, in smooth muscle cells throughout the tract, in secretory epithelia from exocrine glands, and remarkably, in principal cells of epididymis, where co-localization with NTPDase3 was found. The relevance of this co-expression on nucleotide hydrolysis in these cells directly involved in the control of sperm fluid composition was addressed biochemically. This study suggests close regulation of extracellular nucleoside and nucleotide levels in the genital tract by ecto-5′-nucleotidase that, in concurrence with NTPDases, may impact male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeoya-Osiguwa SA, Fraser LR (2002) Capacitation state-dependent changes in adenosine receptors and their regulation of adenylyl cyclase/cAMP. Mol Reprod Dev 63(2):245–255

    Article  PubMed  CAS  Google Scholar 

  • Aliagas E, Torrejón-Escribano B, Lavoie EG, de Aranda IG, Sévigny J, Solsona C, Martín-Satué M (2010) Changes in expression and activity levels of ecto-5′-nucleotidase/CD73 along the mouse female estrous cycle. Acta Physiol (Oxf) Feb 5. doi:10.1111/j.1748-1716.2010.02095.x (Epub ahead of print)

  • Antonio LS, Costa RR, Gomes MD, Varanda WA (2009) Mouse Leydig cells express multiple P2X receptor subunits. Purinergic Signal 3:277–287

    Article  CAS  Google Scholar 

  • Banks FC, Calvert RC, Burnstock G (2009) Changing P2X receptor localization on maturing sperm in the epididymides of mice, hamsters, rats, and humans: a preliminary study. Fertil and Steril. doi:10.1016/j.fertnstert.2009.02.061

  • Baykov AA, Evtushenko OA, Avaeva SM (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270

    Article  PubMed  CAS  Google Scholar 

  • Belleannee C, Da Silva N, Shum W, Breton S (2009) Role of luminal ATP and adenosine in V-ATPase activation. Biol Reprod 81:21

    Google Scholar 

  • Benarroch EE (2008) Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology 70:231–236

    Article  PubMed  Google Scholar 

  • Boeynaems JM, Communi D, Gonzalez NS, Robaye B (2005) Overview of the P2 receptors. Semin Thromb Hemost 31:139–149

    Article  PubMed  CAS  Google Scholar 

  • Braun N, Sévigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364

    Article  PubMed  Google Scholar 

  • Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):S172–S181

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Carlin RW, Lee JH, Marcus DC, Schultz BD (2003) Adenosine stimulates anion secretion across cultured and native adult human vas deferens epithelia. Biol Reprod 68:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2(2):351–360

    Article  PubMed  CAS  Google Scholar 

  • Diniz C, Leal S, Goncalves J (2003) Regional differences in the adenosine A(2) receptor-mediated modulation of contractions in rat vas deferens. Eur J Pharmacol 460:191–199

    Article  PubMed  CAS  Google Scholar 

  • Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J (2007) Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 292:G785–G795

    Article  PubMed  CAS  Google Scholar 

  • Foresta C, Rossato M, Di Virgilio F (1992) Extracellular ATP is a trigger for the acrosome reaction in human spermatozoa. J Biol Chem 267(27):19443–19447

    PubMed  CAS  Google Scholar 

  • Foresta C, Rossato M, Nogara A, Gottardello F, Bordon P, Di Virgilio F (1996) Role of P2-purinergic receptors in rat Leydig cell steroidogenesis. Biochem J 320:499–504

    PubMed  CAS  Google Scholar 

  • Fraser LR (2008) The role of small molecules in sperm capacitation. Theriogenology 70:1356–1359

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Jzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology XXV nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Glass R, Bardini M, Robson T, Burnstock G (2001) Expression of nucleotide P2X receptor subtypes during spermatogenesis in the adult rat testis. Cells Tissues Organs 169(4):377–387

    Article  PubMed  CAS  Google Scholar 

  • Kauffenstein G, Drouin A, Thorin-Trescases N, Bachelard H, Robaye B, D’Orléans-Juste P, Marceau F, Thorin E, Sévigny J (2010) NTPDase1 (CD39) controls nucleotide-dependent vasoconstriction in mouse. Cardiovasc Res 1;85(1):204–213

    Google Scholar 

  • Koszalka P, Ozüyaman B, Huo Y, Zernecke A, Flögel U, Braun N, Buchheiser A, Decking UK, Smith ML, Sévigny J, Gear A, Weber AA, Molojavyi A, Ding Z, Weber C, Ley K, Zimmermann H, Gödecke A, Schrader J (2004) Targeted disruption of cd73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 95(8):814–821

    Article  PubMed  CAS  Google Scholar 

  • Kukulski F, Lévesque SA, Lavoie EG, Lecka J, Bigonnesse F, Knowles AF, Robson SC, Kirley TL, Sévigny J (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 1:193–204

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279(35):36855–36864

    Article  PubMed  CAS  Google Scholar 

  • Levitt B, Head RJ, Westfall DP (1984) High-pressure liquid chromatographic-fluorometric detection of adenosine and adenine nucleotides: application to endogenous content and electrically induced release of adenyl purines in guinea pig vas deferens. Anal Biochem 137(1):93–100

    Article  PubMed  CAS  Google Scholar 

  • Loir M (2001) Adenosine receptor-adenylate cyclase system in the trout testis: involvement in the regulation of germ cell proliferation. Mol Reprod Dev 58(3):307–317

    Article  PubMed  CAS  Google Scholar 

  • Martín-Satué M, Lavoie EG, Pelletier J, Fausther M, Csizmadia E, Guckelberger O, Robson SC, Sévigny J (2009) Localization of plasma membrane bound NTPDases in the murine reproductive tract. Histochem Cell Biol 131:615–628

    Article  PubMed  CAS  Google Scholar 

  • Minelli A, Allegrucci C, Piomboni P, Mannucci R, Lluis C, Franco R (2000) Immunolocalization of A1 adenosine receptors in mammalian spermatozoa. J Histochem Cytochem 48:1163–1171

    PubMed  CAS  Google Scholar 

  • Minelli A, Liguori L, Bellazza I, Mannucci R, Johansson B, Fredholm BB (2004) Involvement of A1 adenosine receptors in the acquisition of fertilizing capacity. J Androl 25:286–292

    PubMed  CAS  Google Scholar 

  • Minelli A, Bellezza I, Collodel G, Fredholm BB (2008) Promiscuous coupling and involvement of protein kinase C and extracellular signal-regulated kinase 1/2 in the adenosine A1 receptor signalling in mammalian spermatozoa. Biochem Pharmacol 75:931–941

    Article  PubMed  CAS  Google Scholar 

  • Monks NJ, Fraser LR (1988) Enzymes of adenosine metabolism in mouse sperm suspensions. J Reprod Fertil 83:389–399

    Article  PubMed  CAS  Google Scholar 

  • Queiroz G, Talaia C, Goncalves J (2003a) ATP modulates noradrenaline release by activation of inhibitory P2Y receptors and facilitatory P2X receptors in the rat vas deferens. J Pharmacol Exp Ther 307:809–815

    Article  PubMed  CAS  Google Scholar 

  • Queiroz G, Talaia C, Gonçalves J (2003b) Adenosine A2A receptor-mediated facilitation of noradrenaline release involves protein kinase C activation and attenuation of presynaptic inhibitory receptor-mediated effects in the rat vas deferens. J Neurochem 85(3):740–748

    PubMed  CAS  Google Scholar 

  • Resta R, Hooker SW, Hansen KR, Laurent AB, Park JL, Blackburn MR, Knudsen TB, Thompson LF (1993) Murine ecto-5′-nucleotidase (CD73): cDNA cloning and tissue distribution. Gene 133(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Rivkees SA (1994) Localization and characterization of adenosine receptor expression in rat testis. Endocrinology 135:2307–2313

    Article  PubMed  CAS  Google Scholar 

  • Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Miranda E, Buffone MG, Edwards SE, Ord TS, Lin K, Sammel MD, Gerton GL, Moss SB, Williams CJ (2008) Extracellular adenosine 5′-triphosphate alters motility and improves the fertilizing capability of mouse sperm. Biol Reprod 79:164–171

    Article  PubMed  CAS  Google Scholar 

  • Schuh SM, Hille B, Babcock DF (2007) Adenosine and catecholamine agonists speed the flagellar beat of mammalian sperm by a non-receptor-mediated mechanism. Biol Reprod 77:960–969

    Article  PubMed  CAS  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  PubMed  CAS  Google Scholar 

  • Zhou WL, Zuo WL, Ruan YC, Wang Z, Du JY, Xiong Y, Chan HC (2007) The role of extracellular ATP in the male reproductive tract. Sheng Li Xue Bao 59:487–494

    PubMed  CAS  Google Scholar 

  • Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to J. Sévigny from the Canadian Institutes of Health Research (CIHR) and to M. Martín-Satué from the University of Barcelona (ACESB09). M. Martín-Satué was recipient of a fellowship from the Spanish Ministry of Education and Science (MEC-Programa José Castillejo), E.G. Lavoie of a scholarship from the Fonds de Recherche en Santé du Québec (FRSQ) and J. Sévigny of a New Investigator award from the CIHR and of a Junior 2 scholarship from the FRSQ. Authors thank Benjamín Torrejón-Escribano from the Microscopy Unit of Serveis Cientificotècnics of the University of Barcelona (Bellvitge Campus) for his technical assistance. MF was a recipient of a scholarship from the government of Gabon.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mireia Martín-Satué or Jean Sévigny.

Additional information

M. Martín-Satué and E. G. Lavoie contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2010_704_MOESM1_ESM.jpeg

Supplementary Figure 1. Immunofluorescence (A) and western blot (B) of ecto-5’-nucleotidase in mouse sperm. A) Ecto-5’-nucleotidase was not detected in sperm smears (a). DAPI was used to label the nuclei (b). Scale bar 20 μm. B) Ecto-5’-nucleotidase was detected in total sperm homogenate and in the soluble fraction but not in spermatozoa alone. Five μg of particulate membrane protein fraction of epididymis were used as control for the presence of the protein (JPEG 64 kb)

418_2010_704_MOESM2_ESM.jpeg

Supplementary Figure 2. Immunolocalization of ecto-5’-nucleotidase in mouse epididymis. Ecto-5’-nucleotidase was detected by immunofluorescence at the luminal surface of principal cells from epithelium in caput (A), corpus (B) and cauda (C) epididymis. Scale bar 75 μm. (JPEG 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Satué, M., Lavoie, E.G., Fausther, M. et al. High expression and activity of ecto-5′-nucleotidase/CD73 in the male murine reproductive tract. Histochem Cell Biol 133, 659–668 (2010). https://doi.org/10.1007/s00418-010-0704-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0704-z

Keywords

Navigation