Skip to main content
Log in

Spreading of prions from the immune to the peripheral nervous system: a potential implication of dendritic cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The implication of dendritic cells (DCs) in the peripheral spreading of prions has increased in the last few years. It has been recently described that DCs can transmit prions to primary neurons from the central nervous system. In order to improve the understanding of the earliest steps of prion peripheral neuroinvasion, we studied, using an in vitro model, the effect of exposing primary peripheral neurons to scrapie-infected lymphoid cells. Thanks to this system, there is evidence that bone marrow dendritic cells (BMDCs) are in connection with neurites of peripheral neurons via cytoplasmic extensions. BMDCs are competent to internalize prions independently from the expression of cellular prion protein (PrPC) and have the capacity to transmit detergent-insoluble, relatively proteinase K-resistant prion protein (PrPSc) to peripheral neurons after 96 h of coculture. Furthermore, we confirmed the special status of the peripheral nervous system in front of prion diseases. Contrary to central neurons, PrPSc infection does not disturb survival and neurite outgrowth. Our model demonstrates that PrPSc-loaded dendritic cells and peripheral nerve fibers that are included in neuroimmune interfaces can initiate and spread prion neuroinvasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andreoletti O, Berthon P, Marc D, Sarradin P, Grosclaude J, van KL, Schelcher F, Elsen JM, Lantier F (2000) Early accumulation of PrP(Sc) in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J Gen Virol 81:3115–3126

    CAS  PubMed  Google Scholar 

  • Aucouturier P, Geissmann F, Damotte D, Saborio GP, Meeker HC, Kascsak R, Kascsak R, Carp RI, Wisniewski T (2001) Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J Clin Invest 108:703–708

    CAS  PubMed  Google Scholar 

  • Beekes M, McBride PA (2007) The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. FEBS J 274:588–605

    Article  CAS  PubMed  Google Scholar 

  • Berthier R, Martinon-Ego C, Laharie AM, Marche PN (2000) A two-step culture method starting with early growth factors permits enhanced production of functional dendritic cells from murine splenocytes. J Immunol Methods 239:95–107

    Article  CAS  PubMed  Google Scholar 

  • Blattler T, Brandner S, Raeber AJ, Klein MA, Voigtlander T, Weissmann C, Aguzzi A (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389:69–73

    Article  CAS  PubMed  Google Scholar 

  • Bruce ME, McBride PA, Farquhar CF (1989) Precise targeting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neurosci Lett 102:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443:803–810

    Article  CAS  PubMed  Google Scholar 

  • Chiocchetti R et al (2008) Anatomical evidence for ileal Peyer’s patches innervation by enteric nervous system: a potential route for prion neuroinvasion? Cell Tissue Res 332(2):185–194

    Article  Google Scholar 

  • Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819

    Article  CAS  PubMed  Google Scholar 

  • Cordier-Dirikoc S, Chabry J (2008) Temporary depletion of CD11c+ dendritic cells delays lymphoinvasion after intraperitonal scrapie infection. J Virol 82:8933–8936

    Article  CAS  PubMed  Google Scholar 

  • Couzin J (2005) Cell biology: the ins and outs of exosomes. Science 308:1862–1863

    Article  CAS  PubMed  Google Scholar 

  • DeArmond SJ, Qiu Y, Sanchez H, Spilman PR, Ninchak-Casey A, Alonso D, Daggett V (1999) PrPc glycoform heterogeneity as a function of brain region: implications for selective targeting of neurons by prion strains. J Neuropathol Exp Neurol 58:1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Defaweux V, Dorban G, Demonceau C, Piret J, Jolois O, Thellin O, Thielen C, Heinen E, Antoine N (2005) Interfaces between dendritic cells, other immune cells, and nerve fibres in mouse Peyer’s patches: potential sites for neuroinvasion in prion diseases. Microsc Res Tech 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Dorban G, Defaweux V, Demonceau C, Flandroy S, Van Lerberghe PB, Falisse-Poirrier N, Piret J, Heinen E, Antoine N (2007a) Interaction between dendritic cells and nerve fibres in lymphoid organs after oral scrapie exposure. Virchows Arch 451:1057–1065

    Article  PubMed  Google Scholar 

  • Dorban G et al (2007b) Oral scrapie infection modifies the homeostasis of Peyer’s patches’ dendritic cells. Histochem Cell Biol 128:243–251

    Article  CAS  PubMed  Google Scholar 

  • Dupiereux I, Zorzi W, Rachidi W, Zorzi D, Pierard O, Lhereux B, Heinen E, Elmoualij B (2006) Study on the toxic mechanism of prion protein peptide 106–126 in neuronal and non neuronal cells. J Neurosci Res 84:637–646

    Article  CAS  PubMed  Google Scholar 

  • Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101:9683–9688

    Article  CAS  PubMed  Google Scholar 

  • Flores-Langarica A, Sebti Y, Mitchell DA, Sim RB, MacPherson GG (2009) Scrapie pathogenesis: the role of complement C1q in scrapie agent uptake by conventional dendritic cells. J Immunol 182:1305–1313

    CAS  PubMed  Google Scholar 

  • Gauczynski S, Nikles D, El-Gogo S, Papy-Garcia D, Rey C, Alban S, Barritault D, Lasmezas CI, Weiss S (2006) The 37-kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is inhibited by polysulfated glycanes. J Infect Dis 194:702–709

    Article  CAS  PubMed  Google Scholar 

  • Gousset K et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  CAS  PubMed  Google Scholar 

  • Heppner FL, Christ AD, Klein MA, Prinz M, Fried M, Kraehenbuhl JP, Aguzzi A (2001) Transepithelial prion transport by M cells. Nat Med 7:976–977

    Article  CAS  PubMed  Google Scholar 

  • Huang FP, MacPherson GG (2004) Dendritic cells and oral transmission of prion diseases. Adv Drug Deliv Rev 56:901–913

    Article  CAS  PubMed  Google Scholar 

  • Huang FP, Farquhar CF, Mabbott NA, Bruce ME, MacPherson GG (2002) Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J Gen Virol 83:267–271

    CAS  PubMed  Google Scholar 

  • Iwata N et al (2006) Distribution of PrP(Sc) in cattle with bovine spongiform encephalopathy slaughtered at abattoirs in Japan. Jpn J Infect Dis 59:100–107

    CAS  PubMed  Google Scholar 

  • Jeffrey M et al (2006) Transportation of prion protein across the intestinal mucosa of scrapie-susceptible and scrapie-resistant sheep. J Pathol 209:4–14

    Article  CAS  PubMed  Google Scholar 

  • Kelsall BL, Rescigno M (2004) Mucosal dendritic cells in immunity and inflammation. Nat Immunol 5:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Kimberlin RH, Walker CA (1989) The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res 12:201–211

    Article  CAS  PubMed  Google Scholar 

  • Kratzel C, Mai J, Madela K, Beekes M, Kruger D (2007) Propagation of scrapie in peripheral nerves after footpad infection in normal and neurotoxin exposed hamsters. Vet Res 38:127–139

    Article  CAS  PubMed  Google Scholar 

  • Kuczius T, Haist I, Groschup MH (1998) Molecular analysis of bovine spongiform encephalopathy and scrapie strain variation. J Infect Dis 178:693–699

    Article  CAS  PubMed  Google Scholar 

  • Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25:2674–2685

    Article  CAS  PubMed  Google Scholar 

  • Luhr KM, Wallin RP, Ljunggren HG, Low P, Taraboulos A, Kristensson K (2002) Processing and degradation of exogenous prion protein by CD11c(+) myeloid dendritic cells in vitro. J Virol 76:12259–12264

    Article  CAS  PubMed  Google Scholar 

  • Luhr KM, Nordstrom EK, Low P, Ljunggren HG, Taraboulos A, Kristensson K (2004) Scrapie protein degradation by cysteine proteases in CD11c+ dendritic cells and GT1-1 neuronal cells. J Virol 78:4776–4782

    Article  CAS  PubMed  Google Scholar 

  • Ma B, von WR, Lindenmaier W, Dittmar KE (2007) Immmunohistochemical study of the blood and lymphatic vasculature and the innervation of mouse gut and gut-associated lymphoid tissue. Anat Histol Embryol 36:62–74

    Article  CAS  PubMed  Google Scholar 

  • Marruchella G et al (2007) Enteroglial and neuronal involvement without apparent neuron loss in ileal enteric nervous system plexuses from scrapie-affected sheep. J Gen Virol 88:2899–2904

    Article  CAS  PubMed  Google Scholar 

  • Marruchella G et al (2009) Ileal tract and Peyer’s patch innervation in scrapie-free versus scrapie-affected ovines. Arch Virol 154:709–714

    Article  CAS  PubMed  Google Scholar 

  • Martinez del HG, Lopez-Bravo M, Metharom P, Ardavin C, Aucouturier P (2006) Prion protein expression by mouse dendritic cells is restricted to the nonplasmacytoid subsets and correlates with the maturation state. J Immunol 177:6137–6142

    Google Scholar 

  • Mitchell DA, Kirby L, Paulin SM, Villiers CL, Sim RB (2007) Prion protein activates and fixes complement directly via the classical pathway: implications for the mechanism of scrapie agent propagation in lymphoid tissue. Mol Immunol 44:2997–3004

    Article  CAS  PubMed  Google Scholar 

  • Nielsen D, Gyllberg H, Ostlund P, Bergman T, Bedecs K (2004) Increased levels of insulin and insulin-like growth factor-1 hybrid receptors and decreased glycosylation of the insulin receptor alpha- and beta-subunits in scrapie-infected neuroblastoma N2a cells. Biochem J 380:571–579

    Article  CAS  PubMed  Google Scholar 

  • Nikles D, Vana K, Gauczynski S, Knetsch H, Ludewigs H, Weiss S (2008) Subcellular localization of prion proteins and the 37 kDa/67 kDa laminin receptor fused to fluorescent proteins. Biochim Biophys Acta 1782:335–340

    CAS  PubMed  Google Scholar 

  • Pasquali P et al (2006) Intracerebral administration of interleukin-12 (IL-12) and IL-18 modifies the course of mouse scrapie. BMC Vet Res 2:37

    Article  PubMed  Google Scholar 

  • Pimpinelli F, Lehmann S, Maridonneau-Parini I (2005) The scrapie prion protein is present in flotillin-1-positive vesicles in central- but not peripheral-derived neuronal cell lines. Eur J Neurosci 21:2063–2072

    Article  PubMed  Google Scholar 

  • Priller J, Prinz M, Heikenwalder M, Zeller N, Schwarz P, Heppner FL, Aguzzi A (2006) Early and rapid engraftment of bone marrow-derived microglia in scrapie. J Neurosci 26:11753–11762

    Article  CAS  PubMed  Google Scholar 

  • Raymond CR, Aucouturier P, Mabbott NA (2007) In vivo depletion of CD11c+ cells impairs scrapie agent neuroinvasion from the intestine. J Immunol 179:7758–7766

    CAS  PubMed  Google Scholar 

  • Rezaie P, Lantos PL (2001) Microglia and the pathogenesis of spongiform encephalopathies. Brain Res Brain Res Rev 35:55–72

    Article  CAS  PubMed  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Rybner-Barnier C et al (2006) Processing of the bovine spongiform encephalopathy-specific prion protein by dendritic cells. J Virol 80:4656–4663

    Article  CAS  PubMed  Google Scholar 

  • Sarnataro D, Caputo A, Casanova P, Puri C, Paladino S, Tivodar SS, Campana V, Tacchetti C, Zurzolo C (2009) Lipid rafts and clathrin cooperate in the internalization of PrP in epithelial FRT cells. PLoS One 4:e5829

    Article  PubMed  Google Scholar 

  • Sigurdson CJ, Spraker TR, Miller MW, Oesch B, Hoover EA (2001) PrP(CWD) in the myenteric plexus, vagosympathetic trunk and endocrine glands of deer with chronic wasting disease. J Gen Virol 82:2327–2334

    CAS  PubMed  Google Scholar 

  • van Keulen LJ, Schreuder BE, Vromans ME, Langeveld JP, Smits MA (2000) Pathogenesis of natural scrapie in sheep. Arch Virol Suppl (16):57–71

  • van Keulen LJ, Vromans ME, van Zijderveld FG (2002) Early and late pathogenesis of natural scrapie infection in sheep. APMIS 110:23–32

    Article  PubMed  Google Scholar 

  • Wakasugi K, Nakano T, Kitatsuji C, Morishima I (2004) Human neuroglobin interacts with flotillin-1, a lipid raft microdomain-associated protein. Biochem Biophys Res Commun 318:453–460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Région Wallone and EU research Immuno TSE project number QLK5-CT-2002-01044. Primary cultures of BMDCs from B6 mice and PrP−/− mice were kindly provided by Christian Villiers, Inserm U823, La Tronche. SAF antibodies were kindly provided by Jacques Grassi CEA Saclay, Gif-sur-Yvette.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauthier Dorban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2010_687_MOESM1_ESM.tif

PrPSc accumulation in peripheral neurons and BMDCs cocultured for 96 hours and cultured separately for 6 hours (cell-blot crude). (TIFF 3120 kb)

418_2010_687_MOESM2_ESM.tif

PrPSc accumulation in peripheral neurons and BMDCs cocultured for 96 hours and cultured separately for 6 hours (cell-blot converted with ImageJ). (TIFF 2106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorban, G., Defaweux, V., Heinen, E. et al. Spreading of prions from the immune to the peripheral nervous system: a potential implication of dendritic cells. Histochem Cell Biol 133, 493–504 (2010). https://doi.org/10.1007/s00418-010-0687-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0687-9

Keywords

Navigation