Skip to main content

Advertisement

Log in

Claudin-11 is over-expressed and dislocated from the blood–testis barrier in Sertoli cells associated with testicular intraepithelial neoplasia in men

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In mouse testis, claudin-11 is responsible for the formation of specific parallel TJ strands of the blood–testis barrier (BTB). Concerning the human BTB, there is no information about the transmembrane TJ proteins. We recently demonstrated the loss of functional integrity of the BTB in testicular intraepithelial neoplasia (TIN), associated with a dislocation of the peripheral TJ proteins ZO-1 and ZO-2. Here, we determined the expression and distribution of claudin-11 at the human BTB in seminiferous tubules with normal spermatogenesis (NSP) and TIN. Immunostaining of claudin-11 revealed intense signals at the basal BTB region in seminiferous epithelium with NSP. Within TIN tubules, claudin-11 immunostaining became diffuse and cytoplasmic. Double immunogold labeling demonstrated a co-localization of claudin-11 and ZO-1 at the inter-Sertoli cell junctions. Real-time RT-PCR of laser microdissected tubules showed an up-regulation of claudin-11 mRNA in TIN. Additionally, increased claudin-11 protein was observed by Western blot. We conclude that claudin-11 constitutes a TJ protein at the human BTB. In TIN tubules, claudin-11 is up-regulated and dislocated from the BTB. Therefore, the disruption of the BTB is related to a dysfunction of claudin-11 and not to a failure of its expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 269:G467–G475

    PubMed  CAS  Google Scholar 

  • Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E (2000) Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 275:20520–20526

    Article  PubMed  CAS  Google Scholar 

  • Beckstead JH (1983) Alkaline phosphatase histochemistry in human germ cell neoplasms. Am J Surg Pathol 7:341–349

    Article  PubMed  CAS  Google Scholar 

  • Bergmann M (1987) Photoperiod and testicular function in Phodopus sungorus. Adv Anat Embryol Cell Biol 105:1–76

    PubMed  CAS  Google Scholar 

  • Bergmann M (2006) Evaluation of testicular biopsy samples from the clinical perspective. In: Schill W-B, Comhaire FH, Hargreave TB (eds) Andrology for the clinician. Springer, Berlin, pp 454–461

    Chapter  Google Scholar 

  • Brehm R, Marks A, Rey R, Kliesch S, Bergmann M, Steger K (2002) Altered expression of connexins 26 and 43 in Sertoli cells in seminiferous tubules infiltrated with carcinoma-in situ or seminoma. J Pathol 197:647–653

    Article  PubMed  CAS  Google Scholar 

  • Brehm R, Rüttinger C, Fischer P, Gashaw I, Winterhager E, Kliesch S, Bohle RM, Steger K, Bergmann M (2006) Transition from preinvasive carcinoma in situ to seminoma is accompanied by a reduction of connexin 43 expression in Sertoli cells and germ cells. Neoplasia 8:499–509

    Article  PubMed  CAS  Google Scholar 

  • Bronstein JM, Micevych PE, Chen K (1997) Oligodendrocyte-specific protein (OSP) is a major component of CNS myelin. J Neurosci Res 50:713–720

    Article  PubMed  CAS  Google Scholar 

  • Chung NP, Cheng CY (2001) Is cadmium chloride-induced inter-sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142:1878–1888

    Article  PubMed  CAS  Google Scholar 

  • Clark MA, Hirst BH (2002) Expression of junction-associated proteins differentiates mouse intestinal M cells from enterocytes. Histochem Cell Biol 118:137–147

    PubMed  CAS  Google Scholar 

  • Cyr DG, Hermo L, Egenberger N, Mertineit C, Trasler JM, Laird DW (1999) Cellular immunolocalization of occludin during embryonic and postnatal development of the mouse testis and epididymis. Endocrinology 140:3815–3825

    Article  PubMed  CAS  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  PubMed  CAS  Google Scholar 

  • Fanning AS, Mitic LL, Anderson JM (1999) Transmembrane proteins in the tight junction barrier (review). J Am Soc Nephrol 10:1337–1345

    PubMed  CAS  Google Scholar 

  • Fink L, Bohle RM (2002) Internal standards for laser microdissection. Methods Enzymol 356:99–113

    Article  PubMed  CAS  Google Scholar 

  • Fink L, Kinfe T, Seeger W, Ermert L, Kummer W, Bohle RM (2000) Immunostaining for cell picking and real-time mRNA quantitation. Am J Pathol 157:1459–1466

    PubMed  CAS  Google Scholar 

  • Fink C, Weigel R, Hembes T, Lauke-Wettwer H, Kliesch S, Bergmann M, Brehm RH (2006a) Altered expression of ZO-1 and -2 in Sertoli cells and loss of the blood–testis barrier integrity in testicular carcinoma-in situ. Neoplasia 8:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Fink L, Kwapiszewska G, Wilhelm J, Bohle RM (2006b) Laser microdissection for cell type- and compartment-specific analyses on genomic and proteomic level. Exp Toxicol Pathol 57(suppl 2):25–29

    Article  PubMed  CAS  Google Scholar 

  • Florin A, Maire M, Bozec A, Hellani A, Chater S, Bars R, Chuzel F, Benahmed M (2005) Androgens and postmeitoic germ cells regulate claudin-11 expression in rat Sertoli cells. Endocrinology 146:1532–1540

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Fujita K, Hiiragi K, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junction with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Mariscal L, Nava P (2005) Tight junctions, from tight intercellular seals to sophisticated protein complexes involved in drug delivery, pathogens interaction and cell proliferation. Adv Drug Deliv Rev 57:811–814

    Article  PubMed  CAS  Google Scholar 

  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA (1999) CNS myelin and Sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99:649–659

    Article  PubMed  CAS  Google Scholar 

  • Griswold MD (1995) Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 52:211–216

    Article  PubMed  CAS  Google Scholar 

  • Hellani A, Ji J, Mauduit C, Deschildre C, Tabone E, Benahmed M (2000) Developmental and hormonal regulation of the expression of oligodendrocyte-specific protein/claudin-11 in mouse testis. Endocrinology 141:3012–3019

    Article  PubMed  CAS  Google Scholar 

  • Hewitt KJ, Agarwal R, Morin PJ (2006) The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6:186–193

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Kliesch S, Behre HM, Hertle L, Bergmann M (1998) Alteration of Sertoli cell differentiation in the presence of carcinoma-in situ in human testis. J Urol 160:1894–1898

    Article  PubMed  CAS  Google Scholar 

  • Lee NP, Cheng CY (2004) Adaptors, junction dynamics, and spermatogenesis. Biol Reprod 71:392–404

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Google Scholar 

  • Lui W, Cheng CY (2007) Regulation of cell junction dynamics by cytokines in the testis—a molecular and biochemical perspective. Cytokine Growth Factor Rev 18:299–311

    Article  PubMed  CAS  Google Scholar 

  • Martin TA, Jiang WG (2001) Tight junctions and their role in cancer metastasis. Histol Histopathol 16:1183–1195

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Semba S, Ueda J, Fuku T, Hasuo T, Chiba H, Sawada N, Kuroda Y, Yokozaki H (2007) Gastric and intestinal claudin expression at the invasive front of gastric carcinoma. Cancer Sci 98:1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Morin PJ (2005) Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 65:9603–9606

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999a) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S (1999b) Claudin-11/OSP-based tight junctions of myelin sheats in brain and Sertoli cells in testis. J Cell Biol 145:579–588

    Article  PubMed  CAS  Google Scholar 

  • Moroi S, Saitou M, Fujimoto K, Sakakibara A, Furuse M, Yoshida O, Tsukita S (1998) Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am J Physiol 274:C1708–C1717

    PubMed  CAS  Google Scholar 

  • Neuvians TP, Gashaw I, Hasenfus A, Hacherhäcker A, Winterhager E, Grobholz R (2005a) Differential expression of IGF components and insulin receptor isoforms in human seminoma versus normal testicular tissue. Neoplasia 7:446–456

    Article  PubMed  CAS  Google Scholar 

  • Neuvians TP, Gashaw I, Sauer CG, von Ostau C, Kliesch S, Bergmann M, Häcker A, Grobholz R (2005b) Standardisation strategy for quantitative PCR in human seminoma and normal testis. J Biotechnol 117:163–171

    Article  PubMed  CAS  Google Scholar 

  • Oliveira SS, Morgado-Díaz JA (2007) Claudins: multifunctional players in epithelial tight junctions and their role in cancer. Cell Mol Life Sci 64:17–28

    Article  PubMed  CAS  Google Scholar 

  • Rajpert-De Meyts E, Skakkebaek NE (1993) The possible role of sex hormones in the development of testicular cancer. Eur Urol 23:54–59

    PubMed  CAS  Google Scholar 

  • Riesen FK, Rothen-Rutishauser B, Wunderli-Allenspach H (2002) A ZO1-GFP fusion protein to study the dynamics of tight junctions in living cells. Histochem Cell Biol 117:307–315

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Inazawa J, Fujimoto K, Tsukita S (1997) Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur J Cell Biol 73:222–231

    PubMed  CAS  Google Scholar 

  • Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    Article  PubMed  CAS  Google Scholar 

  • Sheehan GM, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Ross JS (2007) Loss of claudins-1 and -7 and expression of claudins-3 and -4 correlate with prognostic variables in prostatic adenocarcinomas. Hum Pathol 38: 564–569

    Google Scholar 

  • Shima JE, McLean DJ, McCarrey JR, Griswold MD (2004) The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod 71:319–330

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaek NE (1972) Possible carcinoma-in situ of the testis. Lancet 2:516–517

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaek NE, Berthelsen JG, Giwercman A, Müller J (1987) Carcinoma in situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int J Androl 10:19–28

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Jorgensen N, Carlsen E, Petersen PM, Giwercman A, Andersen AG, Jensen TK, Anderson AM, Müller J (1998) Germ cell cancer and disorders of spermatogenesis: an environmental connection? APMIS 106:3–12

    Article  PubMed  CAS  Google Scholar 

  • Soini Y (2005) Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours. Histopathology 46:551–560

    Article  PubMed  CAS  Google Scholar 

  • Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147:195–204

    Article  PubMed  Google Scholar 

  • Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103:755–766

    Article  PubMed  CAS  Google Scholar 

  • Tarulli GA, Stanton PG, Lerchl A, Meachem SJ (2006) Adult Sertoli cells are not terminally differentiated in the Djungarian Hamster: Effect of FSH on proliferation and junction protein organization. Biol Reprod 74:798–806

    Article  PubMed  CAS  Google Scholar 

  • Tarulli GA, Meachem SJ, Schlatt S, Stanton PG (2008) Regulation of testicular tight junctions by gonadotrophins in the adult Djungarian Hamster in vivo. Reproduction 135:867–877

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2000) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149:13–16

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itho M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11:628–633

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  PubMed  CAS  Google Scholar 

  • Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    Article  PubMed  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev 68:403–429

    Google Scholar 

  • Wong C, Mruk DD, Lui W, Cheng CY (2004) Regulation of blood–testis barrier dynamics: an in vivo study. J Cell Sci 117:783–798

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Mruk DD, Lee WM, Cheng CY (2006) Differential interactions between transforming growth factor-beta3/TbetaR1, TAB 1, and CD2AP disrupt blood–testis barrier and sertoli-germ cell adhesion. J Biol Chem 281:16799–16813

    Article  PubMed  CAS  Google Scholar 

  • Zahraoui A, Louvard D, Galli T (2000) Tight junction, a platform for trafficking and signaling protein complexes. J Cell Biol 151:31–36

    Article  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Marlene Stein and Anne Hild is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Fink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, C., Weigel, R., Fink, L. et al. Claudin-11 is over-expressed and dislocated from the blood–testis barrier in Sertoli cells associated with testicular intraepithelial neoplasia in men. Histochem Cell Biol 131, 755–764 (2009). https://doi.org/10.1007/s00418-009-0576-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0576-2

Keywords

Navigation