Skip to main content
Log in

New morphological aspects of blood islands formation in the embryonic mouse hearts

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Vasculogenesis in embryonic hearts proceeds by formation of aggregates consisting of erythroblasts and endothelial cells. These aggregates are called blood-islands or blood-island-like structures. We aimed to characterize blood islands in mouse embryonic hearts at stages spanning from 11 dpc through 13 dpc, i.e. prior to the establishment of the coronary circulation. Our observations suggested that there are two types of blood islands. One formed by migrating nucleated erythroblasts, which associated with migrating endothelial cell and the second by in situ emergence of two kinds of cells belonging to separate populations: one resembling an erythroblast progenitor and the second resembling an endothelial-cell progenitor. The subepicardial blood islands contain nucleated erythroblasts, undifferentiated mesenchymal cells, platelets, and early lymphocytes. The subepicardial blood islands resemble vesicles with protruding prongs directed toward the myocardium. Ahead of the prongs, angiogenic sprouting and degradation of fibronectin is observed. Vesicles gradually change their shape from spherical to tubular at 13 dpc and grow and extend along the interventricular sulcuses forming vascular tubes. We presume that the vascular tubes located within the interventricular sulcuses are precursors of coronary veins. Our data seems to indicate that embryonic heart vasculogenesis is accompanied by hematopoiesis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  • Alvarez-Silva M, Belo-Diabangouaya P, Salaün J, Dieterien-Lièvre F (2003) Mouse placenta is a major hematopoietic organ. Development 130:5437–5444

    Article  PubMed  CAS  Google Scholar 

  • Bailey AS, Fleming WH (2003) Converging roads: evidence for as adult hemangioblast. Exp Hematol 31:987–993

    PubMed  CAS  Google Scholar 

  • Bollerot K, Pouget C, Jaffredo T (2005) The embryonic origins of hematopoietic stem cells: a tale of hemangioblast and hemogenic endothelium. APMIS 113:790–803

    Article  PubMed  Google Scholar 

  • Bollerot K, Romero S, Dunon D, Jaffredo T (2006) Core binding factor in the early avian embryo: cloning of Cbfβ and combinatorial expression patterns with Runx1. Gene Expr Patterns 6:29–39

    Article  CAS  Google Scholar 

  • Caprioli A, Jaffredo T, Gautier R, Dubourg C (1998) Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci USA 95:1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Ciszek B, Skubiszewska D, Ratajska A (2007) The anatomy of cardiac veins in mice. J Anat 211:55–63

    Article  Google Scholar 

  • de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E (2002) Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16:673–683

    Article  PubMed  Google Scholar 

  • Dieterlen-Lièvre F, Martin C (1981) Diffuse intraembryonic hemopoiesis in normal and chimeric avian development. Dev Biol 88:180–191

    Article  PubMed  Google Scholar 

  • Dzierzak E, Medvinsky A, De Bruijn M (1998) Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol Today 19:228–236

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Porrero JA, Godin IE, Dieterlen-Lièvre F (1995) Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol 192:425–435

    Article  PubMed  CAS  Google Scholar 

  • Haar JL, Ackerman GA (1971) A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 170:199–223

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi I, Huang XL, Takakura N, Toda I, Yamaguchi Y, Kodama H, Suda T (1999) In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. Blood 93:1549–1556

    PubMed  CAS  Google Scholar 

  • Heinzberger CFM (1983) Development of myocardial vascularization in the rat. Acta Morphol Neerl Scand 21:267–284

    Google Scholar 

  • Hirakow R (1983) Development of the cardiac blood vessels in staged human embryos. Acta Anat 115:220–230

    Article  PubMed  CAS  Google Scholar 

  • Hood LC, Rosenquist TH (1992) Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural cell ablation. Anat Rec 234:291–300

    Article  PubMed  CAS  Google Scholar 

  • Hutchins GM, Kessler-Hanna A, Moore GW (1988) Development of the coronary arteries in the embryonic human heart. Circulation 77:1250–1257

    PubMed  CAS  Google Scholar 

  • Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lièvre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583

    PubMed  CAS  Google Scholar 

  • Jaffredo T, Bollerot K, Sugiyama D, Gautier R, Drevon C (2005a) Tracing the hemangioblast during embryogenesis: developmental relationship between endothelial and hematopoietic cells. Int J Dev Biol 49:269–277

    Article  PubMed  CAS  Google Scholar 

  • Jaffredo T, Nottingham W, Liddiard K, Bollerot K, Pouget C, de Bruijn M (2005b) From hemangioblast to hematopoietic stem cell: an endothelial connection? Exp Hematol 33:1029–1040

    Article  PubMed  Google Scholar 

  • Kina T, Ikuta K, Takayama E, Wada K, Majumdar AS, Weissman IL, Katsura Y (2000) The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109:280–287

    Article  PubMed  CAS  Google Scholar 

  • Kálmán F, Virágh S, Módis L (1995) Cell surface glycoconjugates and the extracellular matrix of the developing mouse embryo epicardium. Anat Embryol 191:451–464

    Article  PubMed  Google Scholar 

  • Kattan J, Dettman RW, Bristow J (2004) Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev Dyn 230:34–43

    Article  PubMed  Google Scholar 

  • Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906

    Article  PubMed  CAS  Google Scholar 

  • Mikami T, Eguchi M, Kurosawa H, Sato Y, Sugita K, Suzumura H, Tadokoro N, Watanabe H, Inaba N (2002) Ultrastructural and cytochemical characterization of human cord blood cells. Med Electron Microsc 35:96–101

    Article  PubMed  Google Scholar 

  • Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232

    Article  PubMed  CAS  Google Scholar 

  • Mikkola HKA, Gekas C, Orkin SH, Dieterlen-Lièvre F (2005) Placenta is a site for hematopoietic stem cell development. Exp Hematol 33:1048–1054

    Article  PubMed  CAS  Google Scholar 

  • Morabito CJ, Kattan J, Bristow J (2002) Mechanisms of embryonic coronary artery development. Curr Opin Cardiol 17:235–241

    Article  PubMed  Google Scholar 

  • Muñoz-Chapuli R, Pérez-Pomares JM, Macías D, García-Garrido L, Carmona R, González M (1999) Differentiation of hemangioblasts from embryonic mesothelial cells? A model of the origin of the vertebrate cardiovascular system. Differentiation 64:133–141

    PubMed  Google Scholar 

  • Muñoz-Chápuli R, González-Iriarte M, Carmona R, Atencia G, Macías D, Pérez-Pomares JM (2002) Cellular precursors of the coronary arteries. Tex Heart Inst J 29:243–249

    PubMed  Google Scholar 

  • Murray PDF (1932) The development in vitro of the blood of the early chick embryo. Proc R Soc Lond 11:497–521

    Article  Google Scholar 

  • Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoko H, Katsura Y (1998) In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8:761–769

    Article  PubMed  CAS  Google Scholar 

  • North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M, Marin-Padilla M, Speck NA (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126:2563–2575

    PubMed  CAS  Google Scholar 

  • North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryos. Immunity 16:661–672

    Article  PubMed  CAS  Google Scholar 

  • Orelio C, Dzierzak E (2003) Identification of 2 novel genes developmentally regulated in the mouse aorta-gonad-mesonephros region. Blood 101:2246–2249

    Article  PubMed  CAS  Google Scholar 

  • Palis J, Yoder M (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 29:927–936

    Article  PubMed  CAS  Google Scholar 

  • Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–5084

    PubMed  CAS  Google Scholar 

  • Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    PubMed  CAS  Google Scholar 

  • Pérez-Pomares JM, Macías D, García-Garrido L, Muñoz-Chapuli R (1997) Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn 210:96–105

    Article  PubMed  Google Scholar 

  • Pérez-Pomares J, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Muñoz-Chapuli R (2002) Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 46:1005–1013

    PubMed  Google Scholar 

  • Ratajska A, Fiejka E (1999) Prenatal development of coronary arteries in the rat: morphologic pattern. Anat Embryol 200:533–540

    Article  PubMed  CAS  Google Scholar 

  • Ratajska A, Czarnowska E, Kołodzińska A, Kluzek W, Leśniak W (2006) Vasculogenesis of the embryonic heart: origin of blood island-like structures. Anat Rec A Discov Mol Cell Evol Biol 288:223–232

    PubMed  Google Scholar 

  • Risau W (1995) Differentiation of endothelium. FASEB J 9:926–933

    PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  • Rongish BJ, Torry RJ, Tucker DC, Tomanek RJ (1994) Neovascularization of embryonic rat hearts cultured in oculo closely mimics in utero coronary vessel development. J Vasc Res 31:205–221

    Article  PubMed  CAS  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol 9:213–262

    Google Scholar 

  • Sequeira Lopez MLS, Cherñavvsky DR, Nomasa T, Wall L, Yanagisawa M, Gomez RA (2003) The embryo makes red blood cell progenitors in every tissue simultaneously with blood vessel morphogenesis. Am J Physiol Comp Physiol 284R:1126–1137

    Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  • Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama D, Tsui K (2006) Definitive hematopoiesis from endothelial cells in the mouse embryo: a simple guide. Trends Cardiovasc Med 16:45–49

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama D, Ogawa M, Hirose I, Jaffredo T, Arai K, Tsuji K (2003) Erythropoiesis from acetyl LDL incorporating endothelial cells in the at the preliver stage. Blood 101:4733–4738

    Article  PubMed  CAS  Google Scholar 

  • Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fuijwara Y, Orkin SH (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739

    Article  PubMed  CAS  Google Scholar 

  • Tober J, Koniski A, McGrath KE, Vemishetti R, Emerson R, de-Mesy Bentley KKE, Waugh R, Palis J (2007) The megakaryocyte lineage originates from hemangioblast precursors and is an integral component of both primitive and of definitive hematopoiesis. Blood 109:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Tomanek RJ (2005) Formation of coronary vasculature during development. Angiogenesis 8:273–284

    Article  PubMed  Google Scholar 

  • Tomanek RJ, Ishii Y, Holifield JS, Sjogren CL, Hansen HK, Mikawa T (2006a) VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circ Res 98:947–953

    Article  PubMed  CAS  Google Scholar 

  • Tomanek RJ, Hansen HK, Dedkov EI (2006b) Vascular patterning of the quail coronary system during development. Anat Rec A Discov Mol Cell Evol Biol 288:989–999

    PubMed  Google Scholar 

  • Virágh S, Kálmán F, Gittenberger-de Groot AC, Poelmann RE, Moorman AFM (1990) Angiogenesis and hematopoiesis in the epicardium of the vertebrate embryo heart. In: Bockman DE, Kirby ML (eds) Embryonic origins of defective heart development. Annals of New York Academy of Sciences Series, vol 588. New York Academy of Sciences, New York, pp 455–458

  • Vrancken Peeters MPFM, Gittenberger-de Groot AC, Mentink MMT, Hungerford JE, Little CD, Poelmann RE (1997a) Differences in development of coronary arteries and veins. Cardiovasc Res 36:101–110

    Article  PubMed  CAS  Google Scholar 

  • Vrancken Peeters MPFM, Gittenberger-de Groot AC, Mentink MMT, Hungerford JE, Little CD, Poelmann RE (1997b) The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn 208:338–348

    Article  PubMed  CAS  Google Scholar 

  • Wagner RC (1980) Endothelial cell embryology and growth. Adv Microcirc 9:45–75

    Google Scholar 

  • Wessels A, Pérez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Brand-Saber B, Kurz H, Christ B (1995) Development of the embryonic vascular system. Cell Mol Biol Res 41:219–232

    PubMed  CAS  Google Scholar 

  • Xiong J-W (2008) Molecular and developmental biology of hemangioblast. Dev Dyn 237:1218–1231

    Article  PubMed  CAS  Google Scholar 

  • Yokomizo T, Ogawa M, Osato M, Kanno T, Yoshida H, Fujimoto T, Fraser S, Nishikava S, Okada H, Satake M, Noda T, Nishikawa S, Ito Y (2001) Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells 6:13–23

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Huang J, Tavian M, Nagai Y, Hirose J, Zúñige-Pflücker J-C, Péault B, Kincade PW (2006) Tracing the first waves of lymphopoiesis in mice. Development 133:2041–2051

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Ministry of Science and Higher Education grant (#2 P05A 111 28) and by internal funds of the Medical University of Warsaw. Authors are grateful to Professor Michał Walski (Polish Academy of Sciences, Warsaw) for his stimulating comment and discussion. Authors thank Anna Podbielska and Maria Michniewska for their excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ratajska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajska, A., Czarnowska, E., Kołodzińska, A. et al. New morphological aspects of blood islands formation in the embryonic mouse hearts. Histochem Cell Biol 131, 297–311 (2009). https://doi.org/10.1007/s00418-008-0542-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0542-4

Keywords

Navigation