Skip to main content

Advertisement

Log in

Epithelial-mesenchymal transition downregulates laminin α5 chain and upregulates laminin α4 chain in oral squamous carcinoma cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Basement membranes maintain the epithelial phenotype and prevent invasion and metastasis. We hypothesized that expression of basement membrane laminins might be regulated by epithelial-mesenchymal transition (EMT), hallmark of cancer progression. As EMT is mediated by transcription factor Snail, we used oral squamous carcinoma cells obtained from a primary tumor (43A), from its EMT-experienced recurrence (43B) and Snail-transfected 43A cells (43A-SNA) displaying full EMT, as a model to study laminins and their receptors. Northern blotting, immunofluorescence, and immunoprecipitation showed a gradual loss of laminin-511 and its receptor Lutheran from 43A to 43B and 43A-SNA cells. In contrast, neoexpression of laminin α4 mRNA was found congruent with synthesis of laminin-411. Chromatin immunoprecipitation disclosed direct binding of Snail to regions upstream of laminin α5 and α4 genes. Immunofluorescence and immunoprecipitation showed a switch from hemidesmosomal integrin α6β4 to α6β1 and neoexpression of α1β1 in 43A-SNA cells, and upregulation of integrin-linked kinase in both 43B and 43A-SNA cells. The cells adhered potently to laminin-511 and fibronectin, whereas adhesion to laminin-411 was minimal. In contrast, laminin-411 inhibited cell adhesion to other extracellular matrix proteins. In conclusion, EMT induces a switch from laminin-511 to laminin-411 expression, which may be directly controlled by Snail. Concomitant changes take place in laminin- and collagen-binding receptors. Laminin-411 reduces adhesion to laminin-511 and fibronectin, suggesting that tumor cells could utilize laminin-411 in their invasive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BM:

Basement membrane

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

GAPDH:

Glutaraldehyde-3-phosphate-dehydrogenase

ILK:

Integrin-linked kinase

Lm:

Laminin

MAb:

Monoclonal antibody

Lu:

Lutheran

SCC:

Squamous cell carcinoma

References

  • Aberdam D, Virolle T, Simon-Assmann P (2000) Transcriptional regulation of laminin gene expression. Microsc Res Tech 3:228–237

    Article  Google Scholar 

  • Akashi T, Ito E, Eishi Y, Koike M, Nakamura K, Burgeson RE (2001) Reduced expression of laminin alpha 3 and alpha 5 chains in non-small cell lung cancers. Jpn J Cancer Res 3:293–301

    Google Scholar 

  • Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 5:326–332

    Article  Google Scholar 

  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  PubMed  CAS  Google Scholar 

  • Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 5:608–616

    Article  Google Scholar 

  • Bosman FT, Havenith MG, Visser R, Cleutjens JP (1992) Basement membranes in neoplasia. Prog Histochem Cytochem 4:1–92

    Google Scholar 

  • Brar PK, Dalkin BL, Weyer C, Sallam K, Virtanen I, Nagle RB (2003) Laminin alpha-1, alpha-3, and alpha-5 chain expression in human prepubertal benign prostate glands and adult benign and malignant prostate glands. Prostate 1:65–70

    Article  Google Scholar 

  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  • Champliaud MF, Virtanen I, Tiger CF, Korhonen M, Burgeson R, Gullberg D (2000) Posttranslational modifications and beta/gamma chain associations of human laminin alpha1 and laminin alpha5 chains: purification of laminin-3 from placenta. Exp Cell Res 2:326–335

    Article  Google Scholar 

  • Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, Ang KK, El-Naggar AK, Zanation AM, Cmelak AJ, Levy S, Slebos RJ, Yarbrough WG (2006) Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 16:8210–8218

    Article  Google Scholar 

  • Cress AE, Rabinovitz I, Zhu W, Nagle RB (1995) The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev 3:219–228

    Article  Google Scholar 

  • Downer CS, Watt FM, Speight PM (1993) Loss of alpha 6 and beta 4 integrin subunits coincides with loss of basement membrane components in oral squamous cell carcinomas. J Pathol 3:183–190

    Article  Google Scholar 

  • Durkin ME, Loechel F, Mattei MG, Gilpin BJ, Albrechtsen R, Wewer UM (1997) Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2–13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation. FEBS Lett 2/3:296–300

    Article  Google Scholar 

  • Engvall E, Davis GE, Dickerson K, Ruoslahti E, Varon S, Manthorpe M (1986) Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. J Cell Biol 6(pt 1):2457–2465

    Article  Google Scholar 

  • Engvall E, Ruoslahti E (1977) Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer 1:1–5

    Article  Google Scholar 

  • Francí C, Takkunen M, Dave N, Alameda F, Gómez S, Rodríguez R, Escrivà M, Montserrat-Sentís B, Baró T, Garrido M, Bonilla F, Virtanen I, García de Herreros A (2006) Expression of Snail protein in tumor-stroma interface. Oncogene 37:5134–5144

    Google Scholar 

  • Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K (2001) Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3beta1 and alpha6beta1 integrins. J Biol Chem 20:17550–17558

    Article  Google Scholar 

  • Gardner H, Kreidberg J, Koteliansky V, Jaenisch R (1996) Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 2:301–313

    Article  Google Scholar 

  • Garzino-Demo P, Carrozzo M, Trusolino L, Savoia P, Gandolfo S, Marchisio PC (1998) Altered expression of alpha 6 integrin subunit in oral squamous cell carcinoma and oral potentially malignant lesions. Oral Oncol 3:204–210

    Article  Google Scholar 

  • Guaita S, Puig I, Francí C, Garrido M, Domínguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J (2002) Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 42:39209–39216

    Article  Google Scholar 

  • Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 3:305–318

    Article  Google Scholar 

  • Hagedorn H, Schreiner M, Wiest I, Tubel J, Schleicher ED, Nerlich AG (1998) Defective basement membrane in laryngeal carcinomas with heterogeneous loss of distinct components. Hum Pathol 5:447–454

    Article  Google Scholar 

  • Hemler ME, Sanchez-Madrid F, Flotte TJ, Krensky AM, Burakoff SJ, Bhan AK, Springer TA, Strominger JL (1984) Glycoproteins of 210,000 and 130,000 m.w. on activated T cells: cell distribution and antigenic relation to components on resting cells and T cell lines. J Immunol 6:3011–3018

    Google Scholar 

  • Hibino S, Shibuya M, Engbring JA, Mochizuki M, Nomizu M, Kleinman HK (2004) Identification of an active site on the laminin alpha5 chain globular domain that binds to CD44 and inhibits malignancy. Cancer Res 14:4810–4816

    Article  Google Scholar 

  • Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 23:8586–8594

    Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 6:673–687

    Article  Google Scholar 

  • Iivanainen A, Kortesmaa J, Sahlberg C, Morita T, Bergmann U, Thesleff I, Tryggvason K (1997) Primary structure, developmental expression, and immunolocalization of the murine laminin alpha4 chain. J Biol Chem 44:27862–27868

    Article  Google Scholar 

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci Pt 10:1959–1967

    Article  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 6:422–433

    Article  Google Scholar 

  • Khazenzon NM, Ljubimov AV, Lakhter AJ, Fujita M, Fujiwara H, Sekiguchi K, Sorokin LM, Petäjäniemi N, Virtanen I, Black KL, Ljubimova JY (2003) Antisense inhibition of laminin–8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther 10:985–994

    Google Scholar 

  • Kikkawa Y, Miner JH (2005) Review: Lutheran/B-CAM: a laminin receptor on red blood cells and in various tissues. Connect Tissue Res 4/5:193–199

    Article  Google Scholar 

  • Kikkawa Y, Sanzen N, Fujiwara H, Sonnenberg A, Sekiguchi K (2000) Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. J Cell Sci Pt 5:869–876

    Google Scholar 

  • Kortesmaa J, Doi M, Patarroyo M, Tryggvason K (2002) Chondroitin sulphate modification in the alpha4 chain of human recombinant laminin-8 (alpha4beta1gamma1). Matrix Biol 6:483–486

    Article  Google Scholar 

  • Kortesmaa J, Yurchenco P, Tryggvason K (2000) Recombinant laminin-8 (alpha(4) beta(1) gamma(1)). Production, purification, and interactions with integrins. J Biol Chem 20:14853–14859

    Article  Google Scholar 

  • Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D (1999) Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 6:1071–1079

    Article  Google Scholar 

  • Lefebvre O, Sorokin L, Kedinger M, Simon-Assmann P (1999) Developmental expression and cellular origin of the laminin alpha2, alpha4, and alpha5 chains in the intestine. Dev Biol 1:135–150

    Article  Google Scholar 

  • Liebert M, Washington R, Stein J, Wedemeyer G, Grossman HB (1994) Expression of the VLA beta 1 integrin family in bladder cancer. Am J Pathol 5:1016–1022

    Google Scholar 

  • Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 6835:375–379

    Article  Google Scholar 

  • Ljubimova JY, Fugita M, Khazenzon NM, Das A, Pikul BB, Newman D, Sekiguchi K, Sorokin LM, Sasaki T, Black KL (2004) Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer 3:604–612

    Article  Google Scholar 

  • Lohi J, Oivula J, Kivilaakso E, Kiviluoto T, Fröjdman K, Yamada Y, Burgeson RE, Leivo I, Virtanen I (2000) Basement membrane laminin-5 is deposited in colorectal adenomas and carcinomas and serves as a ligand for alpha3beta1 integrin. APMIS 3:161–172

    Article  Google Scholar 

  • Lohi J, Tani T, Leivo I, Linnala A, Kangas L, Burgeson RE, Lehto VP, Virtanen I (1996) Expression of laminin in renal-cell carcinomas, renal-cell carcinoma cell lines and xenografts in nude mice. Int J Cancer 3:364–371

    Article  Google Scholar 

  • Määttä M, Bützow R, Luostarinen J, Petäjäniemi N, Pihlajaniemi T, Salo S, Miyazaki K, Autio-Harmainen H, Virtanen I (2005) Differential expression of laminin isoforms in ovarian epithelial carcinomas suggesting different origin and providing tools for differential diagnosis. J Histochem Cytochem 10:1293–1300

    Article  Google Scholar 

  • Määttä M, Virtanen I, Burgeson R, Autio-Harmainen H (2001) Comparative analysis of the distribution of laminin chains in the basement membranes in some malignant epithelial tumors: the alpha1 chain of laminin shows a selected expression pattern in human carcinomas. J Histochem Cytochem 6:711–726

    Google Scholar 

  • Matsui C, Wang CK, Nelson CF, Bauer EA, Hoeffler WK (1995) The assembly of laminin-5 subunits. J Biol Chem 40:23496–23503

    Google Scholar 

  • Mauhin V, Lutz Y, Dennefeld C, Alberga A (1993) Definition of the DNA-binding site repertoire for the Drosophila transcription factor SNAIL. Nucleic Acids Res 17:3951–3957

    Article  Google Scholar 

  • Miettinen M, Castello R, Wayner E, Schwarting R (1993) Distribution of VLA integrins in solid tumors. Emergence of tumor-type-related expression. Patterns in carcinomas and sarcomas. Am J Pathol 4:1009–1018

    Google Scholar 

  • Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 6:1713–1723

    Article  Google Scholar 

  • Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 2:278–289

    Article  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 255–284

  • Moulson CL, Li C, Miner JH (2001) Localization of Lutheran, a novel laminin receptor, in normal, knockout, and transgenic mice suggests an interaction with laminin alpha5 in vivo. Dev Dyn 1:101–114

    Article  Google Scholar 

  • Murphy-Ullrich JE (2001) The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 7:785–790

    Article  Google Scholar 

  • Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  PubMed  CAS  Google Scholar 

  • Novak A, Hsu SC, Leung-Hagesteijn C, Radeva G, Papkoff J, Montesano R, Roskelley C, Grosschedl R, Dedhar S (1998) Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci USA 8:4374–4379

    Article  Google Scholar 

  • Ohkubo T, Ozawa M (2004) The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci Pt 9:1675–1685

    Article  Google Scholar 

  • Oloumi A, McPhee T, Dedhar S (2004) Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta 1:1–15

    Google Scholar 

  • Parsons SF, Lee G, Spring FA, Willig TN, Peters LL, Gimm JA, Tanner MJ, Mohandas N, Anstee DJ, Chasis JA (2001) Lutheran blood group glycoprotein and its newly characterized mouse homologue specifically bind alpha5 chain-containing human laminin with high affinity. Blood 1:312–320

    Article  Google Scholar 

  • Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 6:415–428

    Article  Google Scholar 

  • Petäjäniemi N, Korhonen M, Kortesmaa J, Tryggvason K, Sekiguchi K, Fujiwara H, Sorokin L, Thornell LE, Wondimu Z, Assefa D, Patarroyo M, Virtanen I (2002) Localization of laminin alpha4-chain in developing and adult human tissues. J Histochem Cytochem 8:1113–1130

    Google Scholar 

  • Postigo AA, Dean DC (2000) Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc Natl Acad Sci USA 12:6391–6396

    Article  Google Scholar 

  • Pouliot N, Nice EC, Burgess AW (2001) Laminin-10 mediates basal and EGF-stimulated motility of human colon carcinoma cells via alpha(3) beta(1) and alpha(6) beta(4) integrins. Exp Cell Res 1:1–10

    Article  Google Scholar 

  • Pozzi A, Wary KK, Giancotti FG, Gardner HA (1998) Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J Cell Biol 2:587–594

    Article  Google Scholar 

  • Prater CA, Plotkin J, Jaye D, Frazier WA (1991) The properdin-like type I repeats of human thrombospondin contain a cell attachment site. J Cell Biol 5:1031–1040

    Article  Google Scholar 

  • Rebustini IT, Patel VN, Stewart JS, Layvey A, Georges-Labouesse E, Miner JH, Hoffman MP (2007) Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Dev Biol 1:15–29

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sasaki T, Mann K, Timpl R (2001) Modification of the laminin alpha 4 chain by chondroitin sulfate attachment to its N-terminal domain. FEBS Lett 1:173–178

    Article  Google Scholar 

  • Schön M, Klein CE, Hogenkamp V, Kaufmann R, Wienrich BG, Schön MP (2000) Basal-cell adhesion molecule (B-CAM) is induced in epithelial skin tumors and inflammatory epidermis, and is expressed at cell-cell and cell-substrate contact sites. J Invest Dermatol 6:1047–1053

    Article  Google Scholar 

  • Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 5:933–946

    Article  Google Scholar 

  • Somasiri A, Howarth A, Goswami D, Dedhar S, Roskelley CD (2001) Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. J Cell Sci Pt 6:1125–1136

    Google Scholar 

  • Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A, Kirchner T, Brabletz T (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 3:830–840

    Article  Google Scholar 

  • Takkunen M, Grenman R, Hukkanen M, Korhonen M, García de Herreros A, Virtanen I (2006) Snail-dependent and -independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J Histochem Cytochem 11:1263–1275

    Article  Google Scholar 

  • Tamura RN, Rozzo C, Starr L, Chambers J, Reichardt LF, Cooper HM, Quaranta V (1990) Epithelial integrin alpha 6 beta 4: complete primary structure of alpha 6 and variant forms of beta 4. J Cell Biol 4:1593–1604

    Article  Google Scholar 

  • Tan C, Costello P, Sanghera J, Dominguez D, Baulida J, de Herreros AG, Dedhar S (2001) Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma cells. Oncogene 1:133–140

    Article  Google Scholar 

  • Tani T, Karttunen T, Kiviluoto T, Kivilaakso E, Burgeson RE, Sipponen P, Virtanen I (1996) Alpha 6 beta 4 integrin and newly deposited laminin-1 and laminin-5 form the adhesion mechanism of gastric carcinoma. Continuous expression of laminins but not that of collagen VII is preserved in invasive parts of the carcinomas: implications for acquisition of the invading phenotype. Am J Pathol 3:781–793

    Google Scholar 

  • Tani T, Lehto VP, Virtanen I (1999) Expression of laminins 1 and 10 in carcinoma cells and comparison of their roles in cell adhesion. Exp Cell Res 1:115–121

    Article  Google Scholar 

  • Tartakoff AM (1983) Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 4:1026–1028

    Article  Google Scholar 

  • Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K (2002) Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 4:1194–1202

    Article  Google Scholar 

  • Vainionpää N, Lehto VP, Tryggvason K, Virtanen I (2007) Alpha4 chain laminins are widely expressed in renal cell carcinomas and have a de-adhesive function. Lab Invest 8:780–791

    Article  Google Scholar 

  • Wewer UM, Shaw LM, Albrechtsen R, Mercurio AM (1997a) The integrin alpha 6 beta 1 promotes the survival of metastatic human breast carcinoma cells in mice. Am J Pathol 5:1191–1198

    Google Scholar 

  • Wewer UM, Thornell LE, Loechel F, Zhang X, Durkin ME, Amano S, Burgeson RE, Engvall E, Albrechtsen R, Virtanen I (1997b) Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle. Am J Pathol 2:621–631

    Google Scholar 

  • Willberg J, Hormia M, Takkunen M, Kikkawa Y, Sekiguchi K, Virtanen I (2007) Lutheran blood group antigen as a receptor for alpha5 laminins in gingival epithelia. J Periodontol 9:1810–1818

    Article  Google Scholar 

  • Wondimu Z, Geberhiwot T, Ingerpuu S, Juronen E, Xie X, Lindbom L, Doi M, Kortesmaa J, Thyboll J, Tryggvason K, Fadeel B, Patarroyo M (2004) An endothelial laminin isoform, laminin 8 (alpha4beta1gamma1), is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. Blood 6:1859–1866

    Article  Google Scholar 

  • Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, Teng SC, Wu KJ (2007) Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene 10:1459–1467

    Article  Google Scholar 

  • Yanjia H, Xinchun J (2007) The role of epithelial-mesenchymal transition in oral squamous cell carcinoma and oral submucous fibrosis. Clin Chim Acta 1/2:51–56

    Article  Google Scholar 

  • Ylänne J, Virtanen I (1989) 140,000 fibronectin receptor complex in normal and virus-transformed human fibroblasts and in fibrosarcoma cells: identical localization and function. Int J Cancer 6:1126–1136

    Article  Google Scholar 

  • Yurchenco PD, Quan Y, Colognato H, Mathus T, Harrison D, Yamada Y, O’Rear JJ (1997) The alpha chain of laminin-1 is independently secreted and drives secretion of its beta- and gamma-chain partners. Proc Natl Acad Sci USA 19:10189–10194

    Article  Google Scholar 

  • Ziober AF, Falls EM, Ziober BL (2006) The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 8:740–749

    Article  Google Scholar 

Download references

Acknowledgments

Professors J.H. Miner and V. Quaranta are acknowledged for providing valuable antibodies. The skillful technical assistance of Mika Hukkanen, Pipsa Kaipainen, Hannu Kamppinen, Reijo Karppinen, Marja-Leena Piironen, Outi Rauanheimo, Anne Reijula, and Hanna Wennäkoski is warmly appreciated. M.T. was supported by the K. Albin Johansson Stiftelse and the Suomalais-Norjalainen Lääketieteen Säätiö, M.A. and Y.T.K. by the Academy of Finland, the Biomedicum Helsinki Foundation, the Finska Läkaresällskapet, and the Helsinki University Central Hospital (EVO Grant), M.P. by the Swedish Cancer Society and the Karolinska Institute, and I.V. by the Helsinki University Central Hospital (EVO Grant no. TYH6269) and the Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Takkunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takkunen, M., Ainola, M., Vainionpää, N. et al. Epithelial-mesenchymal transition downregulates laminin α5 chain and upregulates laminin α4 chain in oral squamous carcinoma cells. Histochem Cell Biol 130, 509–525 (2008). https://doi.org/10.1007/s00418-008-0443-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0443-6

Keywords

Navigation