Skip to main content
Log in

Intracellular trafficking of LRP9 is dependent on two acidic cluster/dileucine motifs

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

LDL receptor-related protein 9 (LRP9) is a distant member of the low-density lipoprotein receptor (LDLR) superfamily. To date, there are no reports on the cellular distribution of LRP9 or the signals responsible for its localization. Here, we investigated the intracellular localization and trafficking of LRP9. Using confocal microscopy, we demonstrated that LRP9 was not present at the plasma membrane but co-localized with various markers of the trans-Golgi network (TGN) and endosomes. This co-localization was dependent on the presence of two acidic cluster/dileucine (DXXLL) motifs in the cytoplasmic tail of LRP9, which interact with GGA proteins, clathrin adaptors involved in transport between the TGN and endosomes. LRP9 is the first example of a transmembrane protein with an internal GGA-binding sequence in addition to the usual C-terminal motif. An inactivating mutation (LL → AA) in both DXXLL motifs, which completely inhibited the interaction of LRP9 with GGA proteins, led to an intracellular redistribution of LRP9 from the TGN to early endosomes and the cell surface, indicating that the two DXXLL motifs are essential sorting determinants of LRP9. In conclusion, our results suggest that LRP9 cycles between the TGN, endosomes and the plasma membrane through a GGA dependent-trafficking mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA 102:13461–13466

    Article  PubMed  CAS  Google Scholar 

  • Banting G, Ponnambalam S (1997) TGN38 and its orthologues: roles in post-TGN vesicle formation and maintenance of TGN morphology. Biochim Biophys Acta 1355:209–217

    Article  PubMed  CAS  Google Scholar 

  • Battle MA, Maher VM, McCormick JJ (2003) ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins related to signal transduction pathways. Biochemistry 42:7270–7282

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS (2004) The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 5:23–32

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Beckmann G (1993) The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 231:539–545

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, McCormick F (1999) Brefeldin A: the advantage of being uncompetitive. Cell 97:153–155

    Article  PubMed  CAS  Google Scholar 

  • Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266

    PubMed  CAS  Google Scholar 

  • Doray B, Bruns K, Ghosh P, Kornfeld S (2002) Interaction of the cation-dependent mannose 6-phosphate receptor with GGA proteins. J Biol Chem 277:18477–18482

    Article  PubMed  CAS  Google Scholar 

  • Doray B, Lee I, Knisely J, Bu G, Kornfeld S (2007) The gamma/sigma1 and alpha/sigma2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site. Mol Biol Cell 18:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Kornfeld J (2004) The GGA proteins: key players in protein sorting at the trans-Golgi network. Eur J Cell Biol 83:257–262

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Griffith J, Geuze H, Kornfeld S (2003) Mammalian GGAs act together to sort mannose-6-phosphate receptors. J Cell Biol 163:755–766

    Article  PubMed  CAS  Google Scholar 

  • He X, Chang WP, Koelsch G, Tang J (2002) Memapsin 2 (beta-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2. FEBS Lett 524:183–187

    PubMed  CAS  Google Scholar 

  • He X, Li F, Chang WP, Tang J (2005) GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 280:11696–11703

    Article  PubMed  CAS  Google Scholar 

  • He X, Zhu G, Koelsch G, Rodgers KK, Zhang XC, Tang J (2003) Biochemical and structural characterization of the interaction of memapsin 2 (beta-secretase) cytosolic domain with the VHS domain of GGA proteins. Biochemistry 42:12174–12180

    Article  PubMed  CAS  Google Scholar 

  • Herz J (2001) The LDL receptor gene family: (un) expected signal transducers in the brain. Neuron 29:571–581

    Article  PubMed  CAS  Google Scholar 

  • Hirst J, Seaman MN, Buschow SI, Robinson MS (2007) The role of cargo proteins in GGA recruitment. Traffic 8:594–604

    Article  PubMed  CAS  Google Scholar 

  • Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW (2000) Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer’s disease beta-secretase. J Biol Chem 275:33729–33737

    Article  PubMed  CAS  Google Scholar 

  • Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen L, Madsen P, Jacobsen C, Nielsen MS, Gliemann J, Petersen CM (2001) Activation and functional characterization of the mosaic receptor SorLA/LR11. J Biol Chem 276:22788–22796

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen L, Madsen P, Nielsen MS, Geraerts WP, Gliemann J, Smit AB, Petersen CM (2002) The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding. FEBS Lett 511:155–158

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Yamamoto H, Kishida S (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19:659–671

    Article  PubMed  CAS  Google Scholar 

  • Linstedt AD, Mehta A, Suhan J, Reggio H, Hauri HP (1997) Sequence and overexpression of GPP130/GIMPc: evidence for saturable pH-sensitive targeting of a type II early Golgi membrane protein. Mol Biol Cell 8:1073–1087

    PubMed  CAS  Google Scholar 

  • May P, Woldt E, Matz RL, Boucher P (2007) The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39:219–228

    Article  PubMed  CAS  Google Scholar 

  • Misra S, Puertollano R, Kato Y, Bonifacino JS, Hurley JH (2002) Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415:933–937

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MS, Madsen P, Christensen EI, Anders Nykjær Gliemann J, Kasper D, Pohlmann R, Petersen CM (2001) The sortilin cytoplasmic tail conveys Golgi–endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 20:2180–2190

    Article  PubMed  CAS  Google Scholar 

  • Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 26:1596–1603

    Article  PubMed  CAS  Google Scholar 

  • Puertollano R, Bonifacino JS (2004) Interactions of GGA3 with the ubiquitin sorting machinery. Nat Cell Biol 6:244–251

    Article  PubMed  CAS  Google Scholar 

  • Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS. (2001) Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292:1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Puri S, Bachert C, Fimmel CJ, Linstedt AD (2002) Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic 3:641–653

    Article  PubMed  CAS  Google Scholar 

  • Schaub BE, Berger B, Berger EG, Rohrer J (2006) Transition of galactosyltransferase 1 from trans-Golgi cisterna to the trans-Golgi network is signal mediated. Mol Biol Cell 17:5153–5162

    Article  PubMed  CAS  Google Scholar 

  • Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, Willnow TE. (2007) SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 282:32956–32964

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Yu G (2006). sorLA: sorting out APP. Mol Interv 6(74–76):58

    Google Scholar 

  • Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. Embo J 13:1287–1296

    PubMed  CAS  Google Scholar 

  • Strickland DK, Gonias SL, Argraves WS. (2002) Diverse roles for the LDL receptor family. Trends Endocrinol Metab 13:66–74

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Kumagai H, Morikawa Y, Wada Y, Sugiyama A, Yasuda K, Yokoi N, Tamura S, Kojima T, Nosaka T et al (2000) A novel low-density lipoprotein receptor-related protein mediating cellular uptake of apolipoprotein E-enriched beta-VLDL in vitro. Biochemistry 39:15817–15825

    Article  PubMed  CAS  Google Scholar 

  • Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T, Takahashi K, Ishii I, Miida T, Schneider WJ, Saito Y (2001) LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler Thromb Vasc Biol 21:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Takatsu H, Katoh Y, Shiba Y, Nakayama K. (2001) Golgi-localizing, gamma-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem 276:28541–28545

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen R, Obermuller S, Denzer K, Pungitore R, Geuze HJ, von Figura K, Honing S (2000) The dileucine motif within the tail of MPR46 is required for sorting of the receptor in endosomes. Traffic 1:631–640

    Article  PubMed  CAS  Google Scholar 

  • Tortorella LL, Schapiro FB, Maxfield FR. (2007) Role of an acidic cluster/dileucine motif in cation-independent mannose 6-phosphate receptor traffic. Traffic 8:402–413

    Article  PubMed  CAS  Google Scholar 

  • Wahle T, Prager K, Raffler N, Haass C, Famulok M, Walter J (2005) GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol Cell Neurosci 29:453–461

    Article  PubMed  CAS  Google Scholar 

  • Watson RT, Pessin JE. (2000) Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-golgi network of 3T3L1 adipocytes. J Biol Chem 275:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Willnow TE (1999) The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med 77:306–315

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Martin S, James DE, Hong W (2002) GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol Biol Cell 13:3493–3507

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto TDC, Brown MS, Schneider WJ, Casey ML, Goldstein JL, Russell DW (1984) The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39:27–38

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S. (2001) Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292:1716–1718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Juan Bonifacino, Richard Leduc and T. Kitamura for DNA constructs and Marilyn Gist Farquhar for the generous gifts of reagents. We would also like to thank Eric Chevet, Catherine Denicourt and Richard Leduc for their constructive comments on the manuscript. This work was supported by grants from the Canadian Institutes for Health Research and a Canada Research Chair to C.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Lavoie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucher, R., Larkin, H., Brodeur, J. et al. Intracellular trafficking of LRP9 is dependent on two acidic cluster/dileucine motifs. Histochem Cell Biol 130, 315–327 (2008). https://doi.org/10.1007/s00418-008-0436-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0436-5

Keywords

Navigation