Skip to main content
Log in

Islet β-cell area and hormone expression are unaltered in Huntington’s disease

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are often associated with metabolic alterations. This has received little attention, but might be clinically important because it can contribute to symptoms and influence the course of the disease. Patients with Huntington’s disease (HD) exhibit increased incidence of diabetes mellitus (DM). This is replicated in mouse models of HD, e.g., the R6/2 mouse, in which DM is primarily caused by a deficiency of β-cells with impaired insulin secretion. Pancreatic tissue from HD patients has previously not been studied and, thus, the pathogenesis of DM in HD is unclear. To address this issue, we examined pancreatic tissue sections from HD patients at different disease stages. We found that the pattern of insulin immunostaining, levels of insulin transcripts and islet β-cell area were similar in HD patients and controls. Further, there was no sign of amyloid deposition in islets from HD patients. Thus, our data show that pancreatic islets in HD patients appear histologically normal. Functional studies of HD patients with respect to insulin secretion and islet function are required to elucidate the pathogenesis of DM in HD. This may lead to a better understanding of HD and provide novel therapeutic targets for symptomatic treatment in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreassen OA, Dedeoglu A, Stanojevic V, Hughes DB, Browne SE, Leech CA, Ferrante RJ, Habener JF, Beal MF, Thomas MK (2002) Huntington’s Disease of the endocrine pancreas: insulin deficiency and diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 11:410–424

    Article  PubMed  CAS  Google Scholar 

  • Björkqvist M, Fex M, Renström E, Wierup N, Petersén Å, Gil J, Bacos K, Popovic N, Li JY, Sundler F, Brundin P, Mulder H (2005) The R6/2 transgenic mouse model of Huntington’s disease develops diabetes due to deficient beta-cell mass and exocytosis. Hum Mol Genet 14:565–574

    Article  PubMed  CAS  Google Scholar 

  • Björkqvist M, Petersén Å, Bacos K, Isaacs J, Norlén P, Gil J, Popovic N, Sundler F, Bates GP, Tabrizi SJ, Brundin P, Mulder H (2006) Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington’s disease 1093/hmg/ddl094. Hum Mol Genet 15:1713–1721

    Article  PubMed  CAS  Google Scholar 

  • Bonelli RM, Wenning GK (2006) Pharmacological management of Huntington’s disease: an evidence-based review. Curr Pharm Des 12:2701–2720

    Article  PubMed  CAS  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain 1126/science.277.5334.1990. Science 277:1990–1993

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Guo Z, Jiang H, Ware M, Li X-J, Mattson MP (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice 1073/pnas.0536856100. PNAS 100:2911–2916

    Article  PubMed  CAS  Google Scholar 

  • Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27:62–67

    Article  PubMed  CAS  Google Scholar 

  • Gebre-Medhin S, Olofsson C, Mulder H (2000) Islet amyloid polypeptide in the islets of Langerhans: friend or foe? Diabetologia 43:687–695

    Article  PubMed  CAS  Google Scholar 

  • Haas AL, Bright PM (1985) The immunochemical detection and quantitation of intracellular ubiquitin–protein conjugates. J Biol Chem 260:12464–12473

    PubMed  CAS  Google Scholar 

  • Härndahl L, Wierup N, Enerbäck S, Mulder H, Manganiello VC, Sundler F, Degerman E, Ahrén B, Holst LS (2004) {beta}-Cell-targeted overexpression of Phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged Islet morphology 1074/jbc.M308952200. J Biol Chem 279:15214–15222

    Article  PubMed  CAS  Google Scholar 

  • Henley SM, Bates GP, Tabrizi SJ (2005) Biomarkers for neurodegenerative diseases. Curr Opin Neurol 18:698–705

    Article  PubMed  Google Scholar 

  • Heuser IJ, Chase TN, Mouradian MM (1991) The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol Psychiatry 30:943–952

    Article  PubMed  CAS  Google Scholar 

  • Hurlbert MS, Zhou W, Wasmeier C, Kaddis FG, Hutton JC, Freed CR (1999) Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 48:649–651

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    Article  PubMed  CAS  Google Scholar 

  • Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 5:958–963

    Article  PubMed  CAS  Google Scholar 

  • Leblhuber F, Peichl M, Neubauer C, Reisecker F, Steinparz FX, Windhager E, Maschek W (1995) Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. J Neurol Sci 132:76–79

    Article  PubMed  CAS  Google Scholar 

  • Li SH, Li XJ (1998) Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum Mol Genet 7:777–782

    Article  PubMed  CAS  Google Scholar 

  • Maat-Schieman M, Roos R, Losekoot M, Dorsman J, Welling-Graafland C, Hegeman-Kleinn I, Broeyer F, Breuning M, van Duinen S (2007) Neuronal intranuclear and neuropil inclusions for pathological assessment of Huntington’s disease. Brain Pathol 17:31–37

    Article  PubMed  CAS  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  PubMed  CAS  Google Scholar 

  • Mulder H, Ahrén B, Sundler F (1997) Applications of in situ hybridization and immunocytochemistry for localization and quantification of peptide gene expression—a lesson from islet amyloid polypeptide. In: Gu J (ed) Analytical morphology—theory, applications and protocols. Eaton Publishing, Natick, pp 115–138

    Google Scholar 

  • Mulder H, Lindh AC, Sundler F (1993) Islet amyloid polypeptide gene expression in the endocrine pancreas of the rat: a combined in situ hybridization and immunocytochemical study. Cell Tissue Res 274:467–474

    Article  PubMed  CAS  Google Scholar 

  • Petersén Å, Björkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease Eur J Neurosci 24:961–967 doi:10.1111/j.1460-9568.2006.04985.x

    Article  PubMed  Google Scholar 

  • Podolsky S, Leopold NA, Sax DS (1972) Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet 1:1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82:510–529

    Article  PubMed  Google Scholar 

  • Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F, Wanker E, Doherty P, Davies S, Bates G (1999) Formation of polyglutamine inclusions in non-CNS tissue 1093/hmg/8.5.813. Hum Mol Genet 8:813–822

    Article  PubMed  CAS  Google Scholar 

  • Schilling G, Becher M, Sharp A, Jinnah H, Duan K, Kotzuk J, Slunt H, Ratovitski T, Cooper J, Jenkins N, Copeland N, Price D, Ross C, Borchelt D (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin [published erratum appears in Hum Mol Genet 1999 May;8(5):943] 1093/hmg/8.3.397. Hum Mol Genet 8:397–407

    Article  PubMed  CAS  Google Scholar 

  • Simha V, Garg A (2006) Lipodystrophy: lessons in lipid and energy metabolism. Curr Opin Lipidol 17:162–169

    Article  PubMed  CAS  Google Scholar 

  • Slow EJ, Graham RK, Hayden MR (2006) To be or not to be toxic: aggregations in Huntington and Alzheimer disease. Trends Genet 22:408–411

    Article  PubMed  CAS  Google Scholar 

  • Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K, Swaroop M, Kaatz KW, Collins FS, Albin RL (1993) Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. Nat Genet 5:259–265

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group Cell 72:971–983

    Article  Google Scholar 

  • Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53:S16–S21

    Article  PubMed  CAS  Google Scholar 

  • Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107:63–69

    Article  PubMed  CAS  Google Scholar 

  • Wierup N, Björkqvist M, Kuhar MJ, Mulder H, Sundler F (2006) CART regulates islet hormone secretion and is expressed in the beta-cells of type 2 diabetic rats. Diabetes 55:305–311

    Article  PubMed  CAS  Google Scholar 

  • Wierup N, Björkqvist M, Weström B, Pierzynowski S, Sundler F, Sjölund K (2007) Ghrelin and motilin are cosecreted from a prominent endocrine cell population in the small intestine. J Clin Endocrinol Metab 92:3573–3581

    Article  PubMed  CAS  Google Scholar 

  • Wong HY, Ahrén B, Lips CJ, Höppener JW, Sundler F (2003) Postnatally disturbed pancreatic islet cell distribution in human islet amyloid polypeptide transgenic mice. Regul Pept 113:89–94

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Cremona ML, Rothman JE (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway 1083/jcb.200510065. J Cell Biol 172:719–731

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Doris Persson and Britt-Marie Nilsson for expert technical assistance. This research was supported by the Swedish Research Council (M2006-6238, 14196, 4499 and 20403), Novo Nordisk, Crafoord, Tore Nilson, Åke Wiberg, Albert Påhlsson, Magnus Bergwall, Fredrik and Ingrid Thuring, Swedish Diabetes and The Swedish Medical Association Foundations, The Swedish Royal Physiographic Society, and the Medical Faculty in Lund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Bacos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacos, K., Björkqvist, M., Petersén, Å. et al. Islet β-cell area and hormone expression are unaltered in Huntington’s disease. Histochem Cell Biol 129, 623–629 (2008). https://doi.org/10.1007/s00418-008-0393-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0393-z

Keywords

Navigation