Skip to main content
Log in

Differential role of Rho GTPases in endothelial barrier regulation dependent on endothelial cell origin

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

From studies using macrovascular endothelium, it was concluded that Rho A activation generally leads to endothelial barrier breakdown. Here, we characterized the role of Rho GTPases in endothelial barrier regulation in four different cell lines, both microvascular and macrovascular. Rho A activation by cytotoxic necrotizing factor y (CNFy) induced stress fiber formation in all cell lines. This was paralleled by gap formation and barrier breakdown in microvascular mesenteric endothelial cells (MesEnd), human dermal microvascular endothelial cells (HDMEC) as well as in macrovascular pulmonary artery endothelial cells (PAEC) but not in microvascular myocardial endothelial cells (MyEnd). In MyEnd cells, activation of Rac 1 and Cdc42 by CNF-1 strengthened barrier properties whereas in MesEnd, HDMEC and PAEC all three GTPases were activated which increased permeability in PAEC but not in MesEnd and HDMEC. In PAEC, CNF-1-induced decrease of barrier properties was blocked by the Rho kinase inhibitor Y27632 indicating that co-activation of Rho A dominated the barrier response. Inactivation of Rac 1 by toxin B or by lethal toxin (LT) compromised barrier properties in all cell lines. Taken together, Rac 1 requirement for endothelial barrier maintenance but not the destabilizing role of Rho A seems to be ubiquitous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamson RH, Curry FE, Adamson G, Liu B, Jiang Y, Aktories K, Barth H, Daigeler A, Golenhofen N, Ness W, Drenckhahn D (2002) Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. J Physiol 539:295–308

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Schmidt G, Just I (2000) Rho GTPases as targets of bacterial protein toxins. Biol Chem 381:421–426

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA 97:4005–4010

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Schutz GJ, Wiegand J, Golenhofen N, Drenckhahn D (2003) Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells. J Cell Sci 116:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Carbajal JM, Schaeffer RC Jr (1999) RhoA inactivation enhances endothelial barrier function. Am J Physiol 277:C955–964

    PubMed  CAS  Google Scholar 

  • Golenhofen N, Ness W, Wawrousek EF, Drenckhahn D (2002) Expression and induction of the stress protein alpha-B-crystallin in vascular endothelial cells. Histochem Cell Biol 117:203–209

    Article  PubMed  CAS  Google Scholar 

  • Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110:583–588

    PubMed  CAS  Google Scholar 

  • Hoffmann C, Pop M, Leemhuis J, Schirmer J, Aktories K, Schmidt G (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279:16026–16032

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  PubMed  CAS  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    PubMed  CAS  Google Scholar 

  • Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Shimokawa H, Kaibuchi K, Ikezu T (2006) Rho-mediated regulation of tight junctions during monocyte migration across the blood–brain barrier in HIV-1 encephalitis (HIVE). Blood 107:4770–4780

    Article  PubMed  CAS  Google Scholar 

  • Schnittler HJ, Wilke A, Gress T, Suttorp N, Drenckhahn D (1990) Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J Physiol 431:379–401

    PubMed  CAS  Google Scholar 

  • Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D (1993) Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am J Physiol 265:C289–298

    PubMed  CAS  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Selzer J, Lerm M, Aktories K (1998) The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. Cysteine 866 and histidine 881 are essential for enzyme activity. J Biol Chem 273:13669–13674

    Article  PubMed  CAS  Google Scholar 

  • van Wetering S, van Buul JD, Quik S, Mul FP, Anthony EC, ten Klooster JP, Collard JG, Hordijk PL (2002) Reactive oxygen species mediate Rac-induced loss of cell–cell adhesion in primary human endothelial cells. J Cell Sci 115:1837–1846

    PubMed  Google Scholar 

  • Vouret-Craviari V, Bourcier C, Boulter E, van Obberghen-Schilling E (2002) Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. J Cell Sci 115:2475–2484

    PubMed  CAS  Google Scholar 

  • Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, Wilde C, Curry FE, Drenckhahn D (2004a) Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol 286:H394–401

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Drenckhahn D, Adamson RH, Barth H, Curry FE (2004b) cAMP protects endothelial barrier functions by preventing Rac-1 inhibition. Am J Physiol Heart Circ Physiol 287:H2427–2433

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Drenckhahn D, Adamson RH, Curry FE (2004c) Role of adhesion and contraction in Rac 1-regulated endothelial barrier function in vivo and in vitro. Am J Physiol Heart Circ Physiol 287:H704–711

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Bruggeman P, Baumgartner W, Zillikens D, Drenckhahn D (2005a) Pemphigus foliaceus IgG causes dissociation of desmoglein 1-containing junctions without blocking desmoglein 1 transinteraction. J Clin Invest 115:3157–3165

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Curry FE, Adamson RH, Drenckhahn D (2005b) Regulation of actin dynamics is critical for endothelial barrier functions. Am J Physiol Heart Circ Physiol 288:H1296–1305

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Burger S, Curry FR, Drenckhahn D, Adamson RH (2006) Activation of Rac-1 and Cdc42 stabilizes the microvascular endothelial barrier. Histochem Cell Biol 125:397–406

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–1355

    PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Tsang LY, Haworth SG (2005) Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 288:L749–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Stefanie Imhof and Nadja Niedermeier for skilful technical assistance. We thank D. Vestweber, University of Münster, for supplying the VE-cadherin antibody and G. Schmidt and Torsten Giesemann (Department of Pharmacology and Toxicology, University of Freiburg) as well as Holger Barth (University of Ulm) for generously supplying bacterial toxins. These studies were supported in part by grants from the Deutsche Forschungsgemeinschaft (SFB 688, TP A4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Waschke.

Additional information

Y. Baumer and S. Burger contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumer, Y., Burger, S., Curry, F.E. et al. Differential role of Rho GTPases in endothelial barrier regulation dependent on endothelial cell origin. Histochem Cell Biol 129, 179–191 (2008). https://doi.org/10.1007/s00418-007-0358-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0358-7

Keywords

Navigation