Skip to main content

Advertisement

Log in

Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic exocrine glands of adult mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The major cephalic exocrine glands share many morphological and functional features and so can be simultaneously affected in certain autoimmune- and inherited disorders leading to glandular hypofunction. Phenotypic characterization of these exocrine glands is not only an interesting biological issue, but might also be of considerable clinical relevance. The major salivary and lacrimal glands might therefore be potential subjects of future cell-based regenerative/tissue engineering therapeutic approaches. In the present study, we described the expression of the stem and progenitor cell marker Prominin-1 and those of its paralogue, Prominin-2, in the three pairs of major salivary glands, i.e., submandibular-, major sublingual-, and parotid glands in adult mice. We have also documented their expression in the extraorbital lacrimal and meibomian glands (Glandulae tarsales) of the eyelid (Palpebra). Our analysis revealed that murine Prominin-1 and Prominin-2 were differentially expressed in these major cephalic exocrine organs. Expression of Prominin-1 was found to be associated with the duct system, while Prominin-2 expression was mostly, but not exclusively, found in the acinar compartment of these organs with marked differences among the various glands. Finally, we report that Prominin-2, like Prominin-1, is released into the human saliva associated with small membrane particles holding the potential for future diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Corbeil D, Röper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520

    Article  PubMed  CAS  Google Scholar 

  • Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001a) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  PubMed  CAS  Google Scholar 

  • Corbeil D, Fargeas CA, Huttner WB (2001b) Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem Biophys Res Commun 4:939–944

    Article  CAS  Google Scholar 

  • Cutler LS, Chaudhry AP (1974) Cytodifferentiation of the acinar cells of the rat submandibular gland. Dev Biol 41:31–41

    Article  PubMed  CAS  Google Scholar 

  • Cutler LS, Chaudhry AP (1975) Cytodifferentiation of striated duct cells and secretory cells of the convoluted granular tubules of the rat submandibular gland. Am J Anat 143:201–217

    Article  PubMed  CAS  Google Scholar 

  • Cutler LS, Gremski W (1991) Epithelial-mesenchymal interactions in the development of salivary glands. Crit Rev Oral Biol Med 2:1–12

    PubMed  CAS  Google Scholar 

  • Denny PC, Ball WD, Redman RS (1997) Salivary glands: a paradigm for diversity of gland development. Crit Rev Oral Biol Med 8:51–75

    PubMed  CAS  Google Scholar 

  • Denny PC, Denny PA (1999) Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec 254:408–417

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil V, Marzesco AM, Corbeil D, Huttner WB, Wilsch-Bräuninger M (2007) Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 176:483–495

    Article  PubMed  CAS  Google Scholar 

  • Entesarian M, Matsson H, Klar J, Bergendal B, Olson L, Arakaki R, Hayashi Y, Ohuchi H, Falahat B, Bolstad AI, Jonsson R, Wahren-Herlenius M, Dahl N (2005) Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet 37:125–127

    Article  PubMed  CAS  Google Scholar 

  • Fargeas CA, Florek M, Huttner WB, Corbeil D (2003a) Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 278:8586–8596

    Article  PubMed  CAS  Google Scholar 

  • Fargeas CA, Corbeil D, Huttner WB (2003b) AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Stem Cells 21:506–508

    Article  PubMed  CAS  Google Scholar 

  • Fargeas CA, Fonseca A-V, Huttner WB, Corbeil D (2006) Prominin-1 (CD133)—from progenitor cells to human diseases. Future Lipidol 1:213–225

    Article  CAS  Google Scholar 

  • Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, Corbeil D (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26

    Article  PubMed  CAS  Google Scholar 

  • Florek M, Bauer N, Janich P, Wilsch-Bräuninger M, Fargeas CA, Marzesco AM, Ehninger G, Thiele C, Huttner WB, Corbeil D (2007) Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res 328:31–47

    Article  PubMed  CAS  Google Scholar 

  • Gresik EW, MacRae EK (1975) The postnatal development of the sexually dimorphic duct system and of amylase activity in the submandibular glands of mice. Cell Tissue Res 157:411–422

    Article  PubMed  CAS  Google Scholar 

  • Gresik EW (1994) The granular convoluted tubule (GCT) cell of rodent submandibular glands. Microsc Res Tech 27:1–24

    Article  PubMed  CAS  Google Scholar 

  • Gresik EW, Hosoi K, Kurihara K, Maruyama S, Ueha T (1996) The rodent granular convoluted tubule cell—an update. Eur J Morphol 34:221–224

    Article  PubMed  CAS  Google Scholar 

  • Hand AR, Sivakumar S, Barta I, Ball WD, Mirels L (1996) Immunocytochemical studies of cell differentiation during rat salivary gland development. Eur J Morphol 34:149–154

    Article  PubMed  CAS  Google Scholar 

  • Hebel R, Stromberg MW (1976) Anatomy of the laboratory rat. The Williams & Wilkins Company, Baltimore, MD, USA, pp 44–46

    Google Scholar 

  • Ito Y, Hamazaki TS, Ohnuma K, Tamaki K, Asashima M, Okochi H (2007) Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. J Invest Dermatol 127:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Jászai J, Fargeas CA, Florek M, Huttner WB, Corbeil D (2007) Focus on molecules: prominin-1 (CD133). Exp Eye Res [Epub ahead of print; doi:10.1016/j.exer.2006.03.022]

  • Kagami H, Hiramatsu Y, Hishida S, Okazaki Y, Horie K, Oda Y, Ueda M (2000) Salivary growth factors in health and disease. Adv Dent Res 14:99–102

    PubMed  CAS  Google Scholar 

  • Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L (2007) Stem cell marker prominin 1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas (in press)

  • Man YG, Ball WD, Culp DJ, Hand AR, Moreira JE (1995) Persistence of a perinatal cellular phenotype in submandibular glands of adult rat. J Histochem Cytochem 43:1203–1215

    PubMed  CAS  Google Scholar 

  • Man YG, Ball WD, Marchetti L, Hand AR (2001) Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec 263:202–114

    Article  PubMed  CAS  Google Scholar 

  • Marzesco A-M, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  PubMed  CAS  Google Scholar 

  • Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Röper K, Weigmann A, Huttner WB, Denton MJ (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34

    Article  PubMed  CAS  Google Scholar 

  • McCulley JP, Shine WE (2004) The lipid layer of tears: dependent on meibomian gland function. Exp Eye Res 78:361–365

    Article  PubMed  CAS  Google Scholar 

  • Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    PubMed  CAS  Google Scholar 

  • Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y, Terada K, Sugiyama T, Umeyama K, Matsumoto K, Yamamoto T, Endo F (2003) Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 38:104–113

    Article  PubMed  Google Scholar 

  • Patel VN, Rebustini IT, Hoffman MP (2006) Salivary gland branching morphogenesis. Differentiation 74:349–364

    Article  PubMed  CAS  Google Scholar 

  • Redman RS, Ball WD (1978) Cytodifferentiation of secretory cells in the sublingual gland of the prenatal rat: a histological, histochemical and ultrastructural study. Am J Anat 153:367–389

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki J, Goto E, Ono M, Shimmura S, Tsubota K (1998) Meibomian gland dysfunction in patients with Sjogren syndrome. Ophthalmology 105:1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Schoch E, Walker NI (1998) Origin of acinar cell regeneration after atrophy of the rat parotid induced by duct obstruction. Int J Exp Pathol 79:293–301

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435:172–177

    Article  PubMed  CAS  Google Scholar 

  • Tandler B (1993) Structure of the duct system in mammalian major salivary glands. Microsc Res Tech 26:57–74

    Article  PubMed  CAS  Google Scholar 

  • Tandler B, Gresik EW, Nagato T, Phillips CJ (2001) Secretion by striated ducts of mammalian major salivary glands: review from an ultrastructural, functional, and evolutionary perspective. Anat Rec 264:121–145

    Article  PubMed  CAS  Google Scholar 

  • Tiveron MC, Hirsch MR, Brunet JF (1996) The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci 16:7649–7660

    PubMed  CAS  Google Scholar 

  • Tran SD, Wang J, Bandyopadhyay BC, Redman RS, Dutra A, Pak E, Swaim WD, Gerstenhaber JA, Bryant JM, Zheng C, Goldsmith CM, Kok MR, Wellner RB, Baum BJ (2005) Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue Eng 11:172–181

    Article  PubMed  CAS  Google Scholar 

  • Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  • van Blokland SC, Versnel MA (2002) Pathogenesis of Sjogren’s syndrome: characteristics of different mouse models for autoimmune exocrinopathy. Clin Immunol 103:111–124

    Article  PubMed  CAS  Google Scholar 

  • Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  PubMed  CAS  Google Scholar 

  • Wolff MS, Mirels L, Lagner J, Hand AR (2002) Development of the rat sublingual gland: a light and electron microscopic immunocytochemical study. Anat Rec 266:30–42

    Article  PubMed  CAS  Google Scholar 

  • Zajicek G, Yagil C, Michaeli Y (1985) The streaming submandibular gland. Anat Rec 213:150–158

    Article  PubMed  CAS  Google Scholar 

  • Zelles T, Purushotham KR, Macauley SP, Oxford GE, Humphreys-Beher MG (1995) Saliva and growth factors: the fountain of youth resides in us all. J Dent Res 74:1826–1832

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Haleem R, Cai X, Wang Z (2002) Identification and characterization of a novel testosterone-regulated prominin-like gene in the rat ventral prostate. Endocrinology 143:4788–4796

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Suzanne Manthey and Ina Lehmann for the skillful assistance for preparing the cryosection samples. W. B. H. was supported by the Deutsche Forschungsgemeinschaft (SPP 1109, Hu275/7-3; SPP 1111, Hu275/8-3; SFB/TR13-04 B1; SFB 655 A2) and D. C. by the Deutsche Forschungsgemeinschaft (SPP 1109, CO 298/2-2; SFB/TR13-04 B1; SFB 655 A13) and Sächsisches Ministerium für Wissenschaft und Kunst-Europäischer Fond für Regionale Entwicklung (4212/05-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Corbeil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jászai, J., Janich, P., Farkas, L.M. et al. Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic exocrine glands of adult mice. Histochem Cell Biol 128, 409–419 (2007). https://doi.org/10.1007/s00418-007-0334-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0334-2

Keywords

Navigation