Skip to main content

Advertisement

Log in

The effect of orchidectomy on thyroid C cells and bone histomorphometry in middle-aged rats

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

This study was to evaluate the effect of androgen deficiency on thyroid immunoreactive C-cells and bone structure and function in a male orchidectomized middle-aged rat model. Fifteen-month-old male Wistar rats were divided into orchidectomized (Orx) and the sham-operated control (Sham) group. In the Orx group significant decreases (P < 0.05) were found in the volume of C cells (by 14%), their relative volume density (by 13%) and serum calcitonin concentration (by 54%) compared to the controls. Analyses of trabecular microarchitecture of the proximal tibia metaphysis showed that Orx induced marked decreases of cancellous bone area, trabecular thickness and trabecular number (by 52, 20 and 19% respectively; P < 0.05), whereas trabecular separation was increased by 27% (P < 0.05). In Orx rats, serum osteocalcin concentration was increased by 119% (P < 0.05), while serum calcium and phosphorus were 6 and 14% (P < 0.05) lower, respectively, compared to the levels in the Sham. In addition, urine calcium content was considerably higher (by 129%; P < 0.05) in Orx animals. These findings indicate that the androgen deficiency caused by Orx in middle-aged rats modulated the structure of C cells and diminished secretion of calcitonin. Histomorphometrical and biochemical analyses demonstrated a decrease of cancellous bone mass and increased bone turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, Murray R, Manolagas SC (1995) Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 95:2886–2895

    PubMed  CAS  Google Scholar 

  • Bodine PV, Riggs BL, Spelsberg TC (1995) Regulation of c-fos expression and TGF-beta production by gonadal and adrenal androgens in normal human osteoblastic cells. J Steroid Biochem Mol Biol 52:149–158

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Magnus CJ (1982) Calcitonin alters behaviour of isolated osteoclasts. J Pathol 136:27–39

    Article  PubMed  CAS  Google Scholar 

  • Chappard D, Legrand E, Pascaretti C, Basle MF, Audran M (1999) Comparison of eighr histomorphometric methods for measuring trabecular bone architecture by image analysis on histological sections. Microsc Res Tech 45:303–312

    Article  PubMed  CAS  Google Scholar 

  • Chausmer AB, Stevens MD, Severn C (1982) Autoradiographic evidence for a calcitonin receptor on testicular Leydig cells. Science 216:735–736

    Article  PubMed  CAS  Google Scholar 

  • Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC (1989) Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci USA 86:854–857

    Article  PubMed  CAS  Google Scholar 

  • Daniell HW (1997) Osteoporosis after orchiectomy for prostate cancer. J Urol 157:439–444

    Article  PubMed  CAS  Google Scholar 

  • Delverdier M, Cabanie P, Roome N, Enjalbert F, Plaisancie P, van Haverbeke G (1990) Quantitative evaluation by immunocytochemistry of the age-related variations in thyroid C cells in the rat. Acta Anat (Basel) 138(2):182–184

    CAS  Google Scholar 

  • Dhatariya KK, Nair KS (2003) Dehydroepiandrosterone: is there a role for replacement? Mayo Clin Proc 78:1257–1273

    PubMed  CAS  Google Scholar 

  • Evans GL, Bryant HU, Magee D, Sato M, Turner RT (1994) The effects of raloxifene on tibia histomorphometry in ovariectomized rats. Endocrinology 134:2283–2288

    Article  PubMed  CAS  Google Scholar 

  • Farley JR, Tarbaux NM, Hall SL, Linkhart TA, Baylink DJ (1988) The anti-bone-resorptive agent calcitonin also acts in vitro to directly increase bone formation and bone cell proliferation. Endocrinology 123:159–167

    Article  PubMed  CAS  Google Scholar 

  • Farley J, Dimai HP, Stilt-Coffing B, Farley P, Pham T, Mohan S (2000) Calcitonin increases the concentration of insulin-like growth factors in serum-free cultures of human osteoblast-line cells. Calcif Tissue Int 67:247–254

    Article  PubMed  CAS  Google Scholar 

  • Finkelman RD, Bell NH, Strong DD, Demers LM, Baylink DJ (1992) Ovariectomy selectively reduces the concentration of transforming growth factor beta in rat bone: implications for estrogen deficiency-associated bone loss. Proc Natl Acad Sci USA 89:12190–12193

    Article  PubMed  CAS  Google Scholar 

  • Foresta C, Zanatta GP, Busnardo B, Scanelli G, Scandellari C (1985) Testosterone and calcitonin plasma levels in hypogonadal osteoporotic young men. J Endocrinol Invest 8:377–379

    PubMed  CAS  Google Scholar 

  • Gill RK, Turner RT, Wronski TJ, Bell NH (1998) Orchiectomy markedly reduces the concentration of the three isoforms of transforming growth factor beta in rat bone, and reduction is prevented by testosterone. Endocrinology 139:546–550

    Article  PubMed  CAS  Google Scholar 

  • Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, Manolagas SC (1992) 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest 89:883–891

    PubMed  CAS  Google Scholar 

  • Hunter SJ, Schraer H, Gay C (1989) Characterization of the cytoskeleton of isolated chick osteoclasts: effect of calcitonin. J Histochem Cytochem 37:1529–1537

    PubMed  CAS  Google Scholar 

  • Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207

    Article  PubMed  CAS  Google Scholar 

  • Kasperk CH, Wakley GK, Hierl T, Ziegler R (1997) Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res 12:464–471

    Article  PubMed  CAS  Google Scholar 

  • Ke HZ, Crawford DT, Qi H, Chidsey-Frink KL, Simmons HA, Li M, Jee WS, Thompson DD (2001) Long-term effects of aging and orchidectomy on bone and body composition in rapidly growing male rats. J Musculoskelet Neuronal Interact 1:215–224

    PubMed  CAS  Google Scholar 

  • Lu CC, Tsai SC, Chien EJ, Tsai CL, Wang PS (2000) Age-related differences in the secretion of calcitonin in male rats. Metabolism 49:253–258

    Article  PubMed  CAS  Google Scholar 

  • Mackie EJ, Trechsel U (1990) Stimulation of bone formation in vivo by transforming growth factor-beta: remodeling of woven bone and lack of inhibition by indomethacin. Bone 11:295–300

    Article  PubMed  CAS  Google Scholar 

  • Meikle AW, Daynes RA, Araneo BA (1991) Adrenal androgen secretion and biologic effects. Endocrinol Metab Clin North Am 20:381–400

    PubMed  CAS  Google Scholar 

  • Mulder H (1993) Calcitonin-testosterone interrelationship. A classic feedback system? Neth J Med 42:209–211

    PubMed  CAS  Google Scholar 

  • Nakhla AM, Bardin CW, Salomon Y, Mather JP, Jänne OA (1989) The actions of calcitonin on the TM3 Leydig cell line and on rat Leydig cell-enriched cultures. J Androl 10:311–320

    PubMed  CAS  Google Scholar 

  • Ornoy A, Giron S, Aner R, Goldstein M, Boyan BD, Schwartz Z (1994) Gender dependent effects of testosterone and 17 beta-estradiol on bone growth and modelling in young mice. Bone Miner 24(1):43–58

    Article  PubMed  CAS  Google Scholar 

  • Orwoll ES, Stribrska L, Ramsey EE, Keenan EJ (1991) Androgen receptors in osteoblast-like cell lines. Calcif Tissue Int 49:183–187

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM, Matthews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationship between surface, volume and thickness of iliac trabecular bone in again and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    PubMed  CAS  Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJH, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  • Parker CrJr, Mixon RL, Brissie RM, Grizzle WE (1997) Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab 82:3898–3901

    Article  Google Scholar 

  • Pederson L, Kremer M, Judd J, Pascoe D, Spelsberg TC, Riggs BL, Oursler MJ (1999) Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc Natl Acad Sci USA 96:505–510

    Article  PubMed  CAS  Google Scholar 

  • Rosen CJ, Donahue LR, Hunter SJ (1994) Insulin-like growth factors and bone: the osteoporosis connection. Proc Soc Exp Biol Med 206:83–102

    PubMed  CAS  Google Scholar 

  • Salamano G, Isaia GC, Pecchio F, Appendino S, Mussetta M, Molinatti GM (1990) Effect on phosphor-calcium metabolism of testosterone administration in hypogonadal males. Arch Ital Nefrol Androl 62:149–153

    CAS  Google Scholar 

  • Sarantes T, Mourouzis C, Mezitis M, Tesseromatis C, Spyraki C (2001) Interaction between nondrolone decanoate and calcitonin in bone formation markers (osteocalcin and bone specific alkaline phosphatase) and IGF-I in rats. J Musculoskel Neuron Interact 2:167–170

    Google Scholar 

  • Sekulić M, Lovren M (1995) Thyroid parafollicular cells in intact pigs, neonatally treated with gonadal steroids or castrated. Acta Vet 45:203–214

    Google Scholar 

  • Sekulić M, Lovren M, Milošević V, Mićić M, Balint-Perić LJ (1998) Thyroid C cells of middle-aged rats treated with estradiol or calcium. Histochem Cell Biol 109:257–262

    Article  PubMed  Google Scholar 

  • Silverman SL (2003) Calcitonin. Endocrinol Metab Clin North Am 32:273–284

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis JJ, Mayer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  CAS  Google Scholar 

  • Su Y, Chakraborty M, Nathanson MN, Baron R (1992) Differential effects of the 3′,5′-cyclic adenosine monophosphate and protein kinase C pathways on the response of isolated rat osteoclasts to calcitonin. Endocrinology 131:1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Tuukkanen J, Peng Z, Väänänen HK (1994) Effect of running exercise on the bone loss induced by orchidectomy in the rat. Calcif Tissue Int 55:33–37

    Article  PubMed  CAS  Google Scholar 

  • Van Der Eerden BC, Van De Ven J, Lowik CW, Wit JM, Karperien M (2002) Sex steroid metabolism in the tibial growth plate of the rat. Endocrinology 143:4048–4055

    Article  CAS  Google Scholar 

  • Vanderschueren D, Van Herck E, Suiker AMH, Visser WJ, Schot LPC, Bouillon R (1992) Bone and mineral metabolism in aged male rats: short- and long-term effects of androgen deficiency. Endocrinology 130:2906–2916

    Article  PubMed  CAS  Google Scholar 

  • Vanderschueren D, Vandenput L, Boonen S, Van Herck E, Swinnen JV, Bouillon R (2000) An aged rat model of partial androgen deficiency: prevention of both loss of bone and lean body mass by low-dose androgen replacement. Endocrinology 141:1642–1647

    Article  PubMed  CAS  Google Scholar 

  • Villa I, Dal Fiume C, Maestroni A, Rubinacci A, Ravasi F, Guidobono F (2003) Human osteoblast-like cell proliferation induced by calcitonin-related peptides involves PKC activity. Am J Physiol Endrocinol Metab 284:E627–E633

    CAS  Google Scholar 

  • Watson RP, Huls A, Araghinikuam M, Chung S (1996) Dehydroepiandrosterone and diseases of aging. Drugs Aging 9:274–291

    PubMed  CAS  Google Scholar 

  • Weibel ER (1979) Practical methods for biological morphometry. Stereological methods, vol 1. Academic, London, pp 1–415

    Google Scholar 

  • Zaidi M, Datta HK, Mooniga BS, MacIntyre I (1990) Evidence that the action of calcitonin on rat osteoclasts is mediated by two G proteins acting via separate post-receptor pathways. J Endocrinol 126:473–481

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Zhai QH, Ruebel K, Thompson GB, Lloyd RV (2003) Androgen receptor expression in C-cells and in medullary thyroid carcinoma. Endocr Pathol 14:159–165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry for Science, Technology and Development of Serbia, grant number 143007 B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Filipović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipović, B., Šošić-Jurjević, B., Ajdžanović, V. et al. The effect of orchidectomy on thyroid C cells and bone histomorphometry in middle-aged rats. Histochem Cell Biol 128, 153–159 (2007). https://doi.org/10.1007/s00418-007-0307-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0307-5

Keywords

Navigation