Skip to main content
Log in

Replication of segment-specific and intercalated cells in the mouse renal collecting system

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The renal collecting system (CS) is composed of segment-specific (SS) and intercalated (IC) cells. The latter comprise at least two subtypes (type A and non-type A IC). The origin and maintenance of cellular heterogeneity in the CS is unclear. Among other hypotheses, it was proposed that one subtype of IC cells represents a stem cell population from which all cell types in the CS may arise. In the present study, we tested this stem cell hypothesis for the adult kidney by assessing DNA synthesis as a marker for cell replication. SS and IC cells were identified by their characteristic expressions of sodium- (epithelial sodium channel, Na–K-ATPase), water- (aquaporin-2) and acid/base- (H+-ATPase, anion exchanger AE1) transporting proteins. Immunostaining for bromodeoxyuridine (BrdU) and for the proliferating cell nuclear antigen (PCNA) was used to reveal DNA synthesis in CS epithelium. BrdU- and PCNA-immunostaining as well as mitotic figures were seen in all subtypes of CS cells. Dividing cells retained the cell-type specific expression of marker molecules. Treatment of mice with bumetanide combined with a high oral salt intake, which increases the tubular salt load in the CS, profoundly increased the DNA-synthesis rate in SS and non-type A IC cells, but reduced it in type A IC cells. Thus, our data show that DNA synthesis and cell replication occur in each cell lineage of the CS and in differentiated cells. The replication rate in each cell type can be differently modulated by functional stimulation. Independent proliferation of each cell lineage might contribute to maintain the cellular heterogeneity of the CS of the adult kidney and may also add to the adaptation of the CS to altered functional requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The segment-specific cells of the collecting duct are also termed principal cells.

References

  • Alison MR, Poulsom R, Forbes S, Wright NA (2002) An introduction to stem cells. J Pathol 197:419–423

    Article  PubMed  Google Scholar 

  • Alper SL, Natale J, Gluck S, Lodish HF, Brown D (1989) Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci USA 86:5429–5433

    Article  PubMed  CAS  Google Scholar 

  • Anglani F, Forino M, Del Prete D, Tosetto E, Torregrossa R, D’Angelo A (2004) In search of adult renal stem cells. J Cell Mol Med 8:474–487

    PubMed  CAS  Google Scholar 

  • Bagnis C, Marshansky V, Breton S, Brown D (2001) Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol Renal Physiol 280:F437–F448

    PubMed  CAS  Google Scholar 

  • Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AE, Bergstrom GG, Enerback S (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113:1560–1570

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Breton S (1996) Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol 199:2345–2358

    PubMed  CAS  Google Scholar 

  • Brown D, Hirsch S, Gluck S (1988) An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331:622–624

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Lydon J, McLaughlin M, Stuart-Tilley A, Tyszkowski R, Alper S (1996) Antigen retrieval in cryostat tissue sections and cultured cells by treatment with sodium dodecyl sulfate (SDS). Histochem Cell Biol 105:261–267

    Article  PubMed  CAS  Google Scholar 

  • Christensen BM, Kim YH, Kwon TH, Nielsen S (2006) Lithium-treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am J Physiol Renal Physiol 291:F39–F48

    Article  PubMed  CAS  Google Scholar 

  • Dietrich DR (1993) Toxicological and pathological applications of proliferating cell nuclear antigen (PCNA), a novel endogenous marker for cell proliferation. Crit Rev Toxicol 23:77–109

    PubMed  CAS  Google Scholar 

  • Drenckhahn D, Schluter K, Allen DP, Bennett V (1985) Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Eiam-Ong S, Kurtzman NA, Sabatini S (1993) Effect of furosemide-induced hypokalemic metabolic alkalosis on renal transport enzymes. Kidney Int 43:1015–1020

    PubMed  CAS  Google Scholar 

  • Ellison DH, Velazquez H, Wright FS (1989) Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest 83:113–126

    PubMed  CAS  Google Scholar 

  • Ercolani L, Brown D, Stuart-Tilley A, Alper SL (1992) Colocalization of GAPDH and band 3 (AE1) proteins in rat erythrocytes and kidney intercalated cell membranes. Am J Physiol 262:F892–F896

    PubMed  CAS  Google Scholar 

  • Fejes-Toth G, Naray-Fejes-Toth A (1992) Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture. Proc Natl Acad Sci USA 89:5487–5491

    Article  PubMed  CAS  Google Scholar 

  • Feraille E, Carranza ML, Gonin S, Beguin P, Pedemonte C, Rousselot M, Caverzasio J, Geering K, Martin PY, Favre H (1999) Insulin-induced stimulation of Na+, K(+)-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell 10:2847–2859

    PubMed  CAS  Google Scholar 

  • Hemken P, Guo XL, Wang ZQ, Zhang K, Gluck S (1992) Immunologic evidence that vacuolar H+-ATPases with heterogeneous forms of Mr = 31,000 subunit have different membrane distributions in mammalian kidney. J Biol Chem 267:9948–9957

    PubMed  CAS  Google Scholar 

  • Iatropoulos MJ, Williams GM (1996) Proliferation markers. Exp Toxicol Pathol 48:175–181

    PubMed  CAS  Google Scholar 

  • Kaissling B, Stanton BA (1988) Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. Am J Physiol 255:F1256–F1268

    PubMed  CAS  Google Scholar 

  • Kim J, Welch WJ, Cannon JK, Tisher CC, Madsen KM (1992) Immunocytochemical response of type A and type B intercalated cells to increased sodium chloride delivery. Am J Physiol 262:F288–F302

    PubMed  CAS  Google Scholar 

  • Kim J, Tisher CC, Madsen KM (1994) Differentiation of intercalated cells in developing rat kidney: an immunohistochemical study. Am J Physiol 266:F977–F990

    PubMed  CAS  Google Scholar 

  • Kim J, Cha JH, Tisher CC, Madsen KM (1996) Role of apoptotic and non-apoptotic cell death in removal of intercalated cells from developing rat kidney. Am J Physiol 270:F575–F592

    PubMed  CAS  Google Scholar 

  • Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM (1999) Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10:1–12

    PubMed  CAS  Google Scholar 

  • Kloth S, Gmeiner T, Aigner J, Jennings ML, Rockl W, Minuth WW (1998) Transitional stages in the development of the rabbit renal collecting duct. Differentiation 63:21–32

    Article  PubMed  CAS  Google Scholar 

  • Loffing J, Le Hir M, Kaissling B (1995) Modulation of salt transport rate affects DNA synthesis in vivo in rat renal tubules. Kidney Int 47:1615–1623

    PubMed  CAS  Google Scholar 

  • Loffing J, Loffing-Cueni D, Hegyi I, Kaplan MR, Hebert SC, Le Hir M, Kaissling B (1996) Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int 50:1180–1190

    PubMed  CAS  Google Scholar 

  • Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, Kaissling B (2004) Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 15:2276–2288

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Fejes-Toth G, Schwartz G (1996) Postnatal differentiation of rabbit collecting duct intercalated cells. Pediatr Res 39:1–12

    PubMed  CAS  Google Scholar 

  • Minuth WW, Gilbert P, Rudolph U, Spielman WS (1989) Successive histochemical differentiation steps during postnatal development of the collecting duct in rabbit kidney. Histochemistry 93:19–25

    Article  PubMed  CAS  Google Scholar 

  • Na KY, Oh YK, Han JS, Joo KW, Lee JS, Earm JH, Knepper MA, Kim GH (2003) Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am J Physiol Renal Physiol 284:F133–F143

    PubMed  CAS  Google Scholar 

  • Norman JT, Bohman RE, Fischmann G, Bowen JW, McDonough A, Slamon D, Fine LG (1988) Patterns of mRNA expression during early cell growth differ in kidney epithelial cells destined to undergo compensatory hypertrophy versus regenerative hyperplasia. Proc Natl Acad Sci USA 85:6768–6772

    Article  PubMed  CAS  Google Scholar 

  • Nouwen EJ, Verstrepen WA, Buyssens N, Zhu MQ, De Broe ME (1994) Hyperplasia, hypertrophy, and phenotypic alterations in the distal nephron after acute proximal tubular injury in the rat. Lab Invest 70:479–493

    PubMed  CAS  Google Scholar 

  • Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M, Paillard M, Aronson PS, Eladari D (2004) The Cl-/HCO3 - exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 287:F1179–F1188

    Article  PubMed  CAS  Google Scholar 

  • Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci USA 98:4221–4226

    Article  PubMed  CAS  Google Scholar 

  • Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC (2003) Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112:554–565

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Katsura T, Verbavatz JM, Brown D (1995) The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 143:165–175

    PubMed  CAS  Google Scholar 

  • Satlin LM, Schwartz GJ (1987) Postnatal maturation of rabbit renal collecting duct: intercalated cell function. Am J Physiol 253:F622–F635

    PubMed  CAS  Google Scholar 

  • Satlin LM, Matsumoto T, Schwartz GJ (1992) Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol 262:F199–F208

    PubMed  CAS  Google Scholar 

  • Schwartz GJ (2001) Plasticity of intercalated cell polarity: effect of metabolic acidosis. Nephron 87:304–313

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q (2002) Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin. J Clin Invest 109:89–99

    Article  PubMed  CAS  Google Scholar 

  • Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748

    PubMed  CAS  Google Scholar 

  • Stanton BA, Kaissling B (1988) Adaptation of distal tubule and collecting duct to increased Na delivery. II. Na+ and K+ transport. Am J Physiol 255:F1269–F1275

    PubMed  CAS  Google Scholar 

  • Teng-umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM (1996) Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol 7:260–274

    PubMed  CAS  Google Scholar 

  • Tsuruoka S, Schwartz GJ (1996) Adaptation of rabbit cortical collecting duct HCO3- transport to metabolic acidosis in vitro. J Clin Invest 97:1076–1084

    PubMed  CAS  Google Scholar 

  • van de Ven MJ, Colier WN, Oeseburg B, Folgering HT (1999) Induction of acute metabolic acid/base changes in humans. Clin Physiol 19:290–293

    Article  PubMed  Google Scholar 

  • Verlander JW, Madsen KM, Cannon JK, Tisher CC (1994) Activation of acid-secreting intercalated cells in rabbit collecting duct with ammonium chloride loading. Am J Physiol 266:F633–F645

    PubMed  CAS  Google Scholar 

  • Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM (2003) Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 42:356–362

    Article  PubMed  CAS  Google Scholar 

  • Verrey F, Loffing J, Zecevic M, Heitzmann D, Staub O (2003) SGK1: aldosterone-induced relay of Na+ transport regulation in distal kidney nephron cells. Cell Physiol Biochem 13:21–28

    Article  PubMed  CAS  Google Scholar 

  • Vogetseder A, Karadeniz A, Kaissling B, Le Hir M (2005) Tubular cell proliferation in the healthy rat kidney. Histochem Cell Biol 124:97–104

    Article  PubMed  CAS  Google Scholar 

  • Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  PubMed  CAS  Google Scholar 

  • Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW (2003) Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol 284:F229–F241

    PubMed  CAS  Google Scholar 

  • Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the post ischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93:2175–2188

    Article  PubMed  CAS  Google Scholar 

  • Yasoshima K, Satlin LM, Schwartz GJ (1992) Adaptation of rabbit cortical collecting duct to in vitro acid incubation. Am J Physiol 263:F749–F756

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Antibodies against H+-ATPase, AE1, γENaC and Na–K-ATPase were kindly provided by Drs S. Gluck, S. Alper, B. Rossier and E. Feraille, respectively. We thank Drs S. Alper, D. Eladari, M. Le Hir and C. Wagner for their comments on the manuscript. This work was supported by the Swiss National Science Foundation (3200B0-105769/1). The work is part of the M.D.-thesis of P. Wehrli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Loffing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrli, P., Loffing-Cueni, D., Kaissling, B. et al. Replication of segment-specific and intercalated cells in the mouse renal collecting system. Histochem Cell Biol 127, 389–398 (2007). https://doi.org/10.1007/s00418-006-0261-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0261-7

Keywords

Navigation