Skip to main content
Log in

Agrin is highly expressed by chondrocytes and is required for normal growth

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Agrin is a heparan sulfate proteoglycan that is best known for its crucial involvement in the organization and maintenance of postsynaptic structures at the neuromuscular junction. Consistent with this role, mice deficient of agrin die at birth due to respiratory failure. Here we examined the early postnatal development of agrin-deficient mice in which perinatal death was prevented by transgenic expression of neural agrin in motor neurons. Such transgenic, agrin-deficient mice were born at Mendelian ratio but exhibited severe postnatal growth retardation. Growth plate morpholgy was markedly altered in these mice, with changes being most prominent in the hypertrophic zone. Compression of this zone was not caused by reduced viability of hypertrophic chondrocytes, as no differences in the apoptosis rates could be observed. Furthermore, deposition of the major cartilage matrix components collagen type II and aggrecan was slightly reduced in these mice. Consistent with a role for agrin in skeletal development, we show for the first time that agrin is highly expressed by chondrocytes and localizes to the growth plate in wild-type mice. Our data show that agrin is expressed in cartilage and that it plays a critical role in normal skeletal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement of the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23:659–674

    Article  PubMed  CAS  Google Scholar 

  • Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143:1399–1412

    Article  PubMed  CAS  Google Scholar 

  • Bellus GA, McIntosh I, Smith EA, Aylsworth AS, Kaitila I, Horton WA, Greenhaw GA, Hecht JT, Francomano CA (1995) A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 10:357–359

    Article  PubMed  CAS  Google Scholar 

  • Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23:33–44

    Article  PubMed  CAS  Google Scholar 

  • Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Church V, Nohno T, Linker C, Marcelle C, Francis-West P (2002) Wnt regulation of chondrocyte differentiation. J Cell Sci 115:4809–4818

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512

    Article  PubMed  CAS  Google Scholar 

  • Eusebio A, Oliveri F, Barzaghi P, Ruegg MA (2003) Expression of mouse agrin in normal, denervated and dystrophic muscle. Neuromuscul Disord 13:408–415

    Article  Google Scholar 

  • Ferns MJ, Campanelli JT, Hoch W, Scheller RH, Hall Z (1993) The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11:491–502

    Article  PubMed  CAS  Google Scholar 

  • Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–535

    Article  PubMed  CAS  Google Scholar 

  • Gesemann M, Denzer AJ, Ruegg MA (1995) Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol 128:625–636

    Article  PubMed  CAS  Google Scholar 

  • Girkontaite I, Frischholz S, Lamm P, Wagner K, Swoboda B, Aigner T, von der Mark K (1996) Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biol 15:231–238

    Article  PubMed  CAS  Google Scholar 

  • Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996) Agrin acts via a MuSK receptor complex. Cell 17:513–523

    Article  Google Scholar 

  • Goldner J (1938) A modification of the Masson trichrome technique for routine laboratory purposes. Am J Pathol 14:237–243

    Google Scholar 

  • Gress CJ, Jacenko O (2000) Growth plate compressions and altered hematopoiesis in collagen X null mice. J Cell Biol 149:983–993

    Article  PubMed  CAS  Google Scholar 

  • Groffen AJ, Ruegg MA, Dijkman H, van de Velden TJ, Buskens CA, van den Born J, Assmann KJ, Monnens LA, Veerkamp JH, van den Heuvel LP (1998) Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem 46:19–27

    PubMed  CAS  Google Scholar 

  • Gustafsson E, Aszodi A, Ortega N, Hunziker EB, Denker HW, Werb Z, Fassler R (2003). Role of collagen type II and perlecan in skeletal development. Ann N Y Acad Sci 995:140–150

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Oz HS, Wiland D, Gharib S, Deshpande R, Hill RJ, Katz WS, Sternberg PW (2004) C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell 118:795–806

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Le AX, Helms JA (1997) Expression of indian hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis. Mech Dev 69:197–202

    Article  PubMed  CAS  Google Scholar 

  • Jacenko O, LuValle PA, Olsen BR (1993) Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature 365:56–61

    Article  PubMed  CAS  Google Scholar 

  • Karaplis AC (2002) Embryonic development of bone and the molecular regulation of intramembranous and endochondral bone formation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, vol 1, 2nd edn. Academic. San Diego, pp 33–58

  • Khan AA, Bose C, Yam LS, Soloski MJ, Rupp F (2001) Physiological regulation of the immunological synapse by agrin. Science 292:1681–1686

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  PubMed  CAS  Google Scholar 

  • Kwan KM, Pang MK, Zhou S, Cowan SK, Kong RY, Pfordte T, Olsen BR, Sillence DO, Tam PP, Cheah KS (1997) Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol 136:459–471

    Article  PubMed  CAS  Google Scholar 

  • Lieth E, Cardasis CA, Fallon JR (1992) Muscle-derived agrin in cultured myotubes: expression in the basal lamina and at induced acetylcholine receptor clusters. Dev Biol 149:41–54

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee K-F (2001) Distinct roles of nerve nd muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L (2002) Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35:489–505

    Article  PubMed  CAS  Google Scholar 

  • Masiakowski P, Yancopoulos GD (1998) The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol 8:R407

    Article  PubMed  CAS  Google Scholar 

  • McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418

    PubMed  CAS  Google Scholar 

  • Naski MC, Colvin JS, Coffin JD, Ornitz DM (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977–4988

    PubMed  CAS  Google Scholar 

  • Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • O’Connor LT, Lauterborn JC, Gall CM, Smith MA (1994) Localization and alternative splicing of agrin mRNA in adult rat brain: transcripts encoding isoforms that aggregate acetylcholine receptors are not restricted to cholinergic regions. J Neurosci 14:1141–1152

    PubMed  CAS  Google Scholar 

  • Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254

    Article  PubMed  CAS  Google Scholar 

  • Ruegg MA, Tsim KW, Horton SE, Kroger S, Escher G, Gensch EM, McMahan UJ (1992) The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8:691–699

    Article  PubMed  CAS  Google Scholar 

  • Rupp F, Ozcelik T, Linial M, Peterson K, Francke U, Scheller R (1992) Structure and chromosomal localization of the mammalian agrin gene. J Neurosci 12:3535–3544

    PubMed  CAS  Google Scholar 

  • Saldanha J, Singh J, Mahadevan D (1998) Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases. Protein Sci 7:1632–1635

    Article  CAS  Google Scholar 

  • Serpinskaya AS, Feng G, Sanes JR, Craig AM (1999) Synapse formation by hippocampal neurons from agrin-deficient mice. Dev Biol 205:65–78

    Article  PubMed  CAS  Google Scholar 

  • Somerville JM, Aspden RM, Armour KE, Armour KJ, Reid DM (2004) Growth of C57BL/6 mice and the material and mechanical properties of cortical bone from the tibia. Calcif Tissue Int 74:469–475

    Article  PubMed  CAS  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086

    PubMed  CAS  Google Scholar 

  • Tavormina PL, Shiang R, Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS, Wilcox WR, Rimoin DL, Cohn DH, Wasmuth JJ (1995) Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 9:321–328

    Article  PubMed  CAS  Google Scholar 

  • Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, Pfaff SL (1999) Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23:675–687

    Article  PubMed  CAS  Google Scholar 

  • Van der Eerden BCJ, Karperien M, Witt JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801

    Article  PubMed  CAS  Google Scholar 

  • Vanky P, Brockstedt U, Hjerpe A, Wikström B (1998) Kinetic studies on epiphyseal growth cartilage in the normal mouse. Bone 22:331–339

    Article  PubMed  CAS  Google Scholar 

  • Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130:1003–1015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The expert technical assistance of Christiane Schulz and Gabi Mettenleiter is gratefully acknowledged. This work was financially supported by the Deutsche Forschungsgemeinschaft (grants HA1652/1-1 and HA1652/1-2), by the Swiss National Science Foundation (to MAR) and the Canton of Basel-Stadt (to MAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Juergen Hausser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausser, HJ., Ruegg, M.A., Brenner, R.E. et al. Agrin is highly expressed by chondrocytes and is required for normal growth. Histochem Cell Biol 127, 363–374 (2007). https://doi.org/10.1007/s00418-006-0258-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0258-2

Keywords

Navigation