Skip to main content

Advertisement

Log in

High-efficiency gene transfer into cultured embryonic motoneurons using recombinant lentiviruses

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Primary neurons are a common tool for investigating gene function for survival and morphological and functional differentiation. Gene transfer techniques play an important role in this context. However, the efficacy of conventional gene transfer techniques, in particular for primary motoneurons is low so that it is not possible to distinguish whether the observed effects are representative for all neurons or only for the small subpopulation that expresses the transfected cDNA. In order to develop techniques that allow high gene transfer rates, we have optimized lentiviral-based gene transfer for cultured motoneurons by using a replication-defective viral vector system. These techniques result in transduction efficacies higher than 50%, as judged by EGFP expression under the control of SFFV or CMV promoters. Under the same conditions, survival and morphology of the cultured motoneurons was not altered, at least not when virus titers did not exceed a multiplicity of infection of 100. Under the same cell culture conditions, electroporation resulted in less than 5% transfected motoneurons and reduced survival. Therefore we consider this lentivirus-based gene transfer protocol as a suitable tool to study the effects of gene transfer on motoneuron survival, differentiation and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ango F, Albani-Torregrossa S, Joly C, Robbe D, Michel JM, Pin JP, Bockaert J, Fagni L (1999) A simple method to transfer plasmid DNA into neuronal primary cultures: functional expression of the mGlu5 receptor in cerebellar granule cells. Neuropharmacology 38:793–803

    Article  PubMed  CAS  Google Scholar 

  • Arakawa Y, Sendtner M, Thoenen H (1990) Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 10:3507–3515

    PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. VB Chanda

  • Azzouz M, Mazarakis N (2004) Non-primate EIAV-based lentiviral vectors as gene delivery system for motor neuron diseases. Curr Gene Ther 4:277–286

    PubMed  CAS  Google Scholar 

  • Blichenberg A, Schwanke B, Rehbein M, Garner CC, Richter D, Kindler S (1999) Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J Neurosci 19:8818–8829

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13:39–53

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Toyoguchi M, Looney DJ, Lee J, Davidson MC, Freeman WR (2005) Efficient gene transfer to retinal pigment epithelium cells with long-term expression. Retina 25:193–201

    Article  PubMed  Google Scholar 

  • Cisterni C, Henderson CE, Aebischer P, Pettmann B, Deglon N (2000) Efficient gene transfer and expression of biologically active glial cell line-derived neurotrophic factor in rat motoneurons transduced wit lentiviral vectors. J Neurochem 74:1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Dityateva G, Hammond M, Thiel C, Ruonala MO, Delling M, Siebenkotten G, Nix M, Dityatev A (2003) Rapid and efficient electroporation-based gene transfer into primary dissociated neurons. J Neurosci Methods 130:65–73

    Article  PubMed  CAS  Google Scholar 

  • DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987a) Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7:379–387

    CAS  Google Scholar 

  • DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987b) Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7:379–387

    CAS  Google Scholar 

  • Easton RM, Johnson EM, Creedon DJ (1998) Analysis of events leading to neuronal death after infection with E1-deficient adenoviral vectors. Mol Cell Neurosci 11:334–347

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Muller JG, Rethwilm A (1998) Foamy virus particle formation. J Virol 72:1610–1615

    PubMed  CAS  Google Scholar 

  • Frolov I, Schlesinger S (1994) Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells. J Virol 68:1721–1727

    PubMed  CAS  Google Scholar 

  • Griffin DE, Hardwick JM (1997) Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 51:565–592

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V (1934) The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J Exp Zool 68:449–494

    Article  Google Scholar 

  • Hamburger V (1958) Regression versus peripheral control of differentiation in motor hyperplasia. Am J Anat 102:365–410

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V (1977) The developmental history of the motor neuron. Neurosci Res Program Bull 1–37

  • Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Simpson LC, Moffet B, Vandlen RA, Koliatsos VE, et al (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. SCI 266:1062–1064

    Article  CAS  Google Scholar 

  • Jarmy G, Heinkelein M, Weissbrich B, Jassoy C, Rethwilm A (2001a) Phenotypic analysis of the sensitivity of HIV-1 to inhibitors of the reverse transcriptase, protease, and integrase using a self-inactivating virus vector system. J Med Virol 64:223–231

    Article  CAS  Google Scholar 

  • Jarmy G, Heinkelein M, Weissbrich B, Jassoy C, Rethwilm A (2001b) Phenotypic analysis of the sensitivity of HIV-1 to inhibitors of the reverse transcriptase, protease, and integrase using a self-inactivating virus vector system. J Med Virol 64:223–231

    Article  CAS  Google Scholar 

  • Jarmy G, Heinkelein M, Weissbrich B, Jassoy C, Rethwilm A (2001c) Phenotypic analysis of the sensitivity of HIV-1 to inhibitors of the reverse transcriptase, protease, and integrase using a self-inactivating virus vector system. J Med Virol 64:223–231

    Article  CAS  Google Scholar 

  • Jarmy G, Heinkelein M, Weissbrich B, Jassoy C, Rethwilm A (2001d) Phenotypic analysis of the sensitivity of HIV-1 to inhibitors of the reverse transcriptase, protease, and integrase using a self-inactivating virus vector system. J Med Virol 64:223–231

    Article  CAS  Google Scholar 

  • Jarmy G, Heinkelein M, Weissbrich B, Jassoy C, Rethwilm A (2001e) Phenotypic analysis of the sensitivity of HIV-1 to inhibitors of the reverse transcriptase, protease, and integrase using a self-inactivating virus vector system. J Med Virol 64:223–231

    Article  CAS  Google Scholar 

  • Junghans D, Chauvet S, Buhler E, Dudley K, Sykes T, Henderson CE (2004) The CES-2-related transcription factor E4BP4 is an intrinsic regulator of motoneuron growth and survival. Development 131:4425–4434

    Article  PubMed  CAS  Google Scholar 

  • Kaech S, Kim JB, Cariola M, Ralston E (1996) Improved lipid-mediated gene transfer into primary cultures of hippocampal neurons. Brain Res Mol Brain Res 35:344–348

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Ding J, Kowal AS, Nardine T, Allen E, Delcroix JD, Wu C, Mobley W, Fuchs E, Yang Y (2003) BPAG1n4 is essential for retrograde axonal transport in sensory neurons. J Cell Biol 163:223–229

    Article  PubMed  CAS  Google Scholar 

  • Metzger F, Wiese S, Sendtner M (1998) Effect of glutamate on dendritic growth in embryonic rat motoneurons. J Neurosci 18:1735–1742

    PubMed  CAS  Google Scholar 

  • Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A (1997) Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 71:7305–7311

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  CAS  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996b) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  CAS  Google Scholar 

  • Nielsen J, Adolph SK, Rajpert-De Meyts E, Lykke-Andersen J, Koch G, Christiansen J, Nielsen FC (2003) Nuclear transit of human zipcode-binding protein IMP1. Biochem J 376:383–391

    Article  PubMed  CAS  Google Scholar 

  • Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den BL, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW, Qin-Wei Y, Prevette D, Yan Q (1992) Brain-derived neurotrophic factor resues developing avian motoneurons from cell death. Nature 360:755–757

    Article  PubMed  CAS  Google Scholar 

  • Pietschmann T, Heinkelein M, Heldmann M, Zentgraf H, Rethwilm A, Lindemann D (1999) Foamy virus capsids require the cognate envelope protein for particle export. J Virol 73:2613–2621

    PubMed  CAS  Google Scholar 

  • Rosenblad C, Georgievska B, Kirik D (2003) Long-term striatal overexpression of GDNF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. Eur J Neurosci 17:260–270

    Article  PubMed  Google Scholar 

  • Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual. Cold Spring Habor Laboratory, Cold Spring Habor

    Google Scholar 

  • Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde Y-A (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–758

    Article  PubMed  CAS  Google Scholar 

  • Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23:628–633

    Article  PubMed  CAS  Google Scholar 

  • Stöckli KA, Lottspeich F, Sendtner M, Masiakowski P, Carroll P, Götz R, Lindholm D, Thoenen H (1989) Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342:920–923

    Article  PubMed  Google Scholar 

  • Stoop R, Poo MM (1996) Synaptic modulation by neurotrophic factors: differential and synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor. J Neurosci 16:3256–3264

    PubMed  CAS  Google Scholar 

  • Trono D (2000) HIV-based vectors: getting the best out of the worst. J Gene Med 2:61–63

    Article  PubMed  CAS  Google Scholar 

  • Trono D (2001) Lentiviral vectors for the genetic modification of hematopoietic stem cells. Ernst Schering Res Found Workshop 19–28

  • Wiese S, Metzger F, Holtmann B, Sendtner M (1999) The role of p75NTR in modulating neurotrophin survival effects in developing motoneurons. Eur J Neurosci 11:1668–1676

    Article  PubMed  CAS  Google Scholar 

  • Wiese S, Pei G, Karch C, Troppmair J, Holtmann B, Rapp UR, Sendtner M (2001) Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat Neurosci 4:137–142

    Article  PubMed  CAS  Google Scholar 

  • Wiesenhofer B, Humpel C (2000) Lipid-mediated gene transfer into primary neurons using FuGene: comparison to C6 glioma cells and primary glia. Exp Neurol 164:38–44

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Elliott J, Snider WD (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360:753–755

    Article  PubMed  CAS  Google Scholar 

  • Yap MW, Dodding MP, Stoye JP (2006) Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle. J Virol 80:4061–4067

    Article  PubMed  CAS  Google Scholar 

  • Zala D, Bensadoun JC, Pereira dA, Leavitt BR, Gutekunst CA, Aebischer P, Hayden MR, Deglon N (2004) Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington’s disease transgenic mice. Exp Neurol 185:26–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martin Heinkelein for providing the initial viral plasmids and support in establishing lentiviral methods as well as Katrin Kuebert for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SFB581), the IKFZ, the Hermann und Lilly Schilling-Stiftung, the SMA Foundation, and the EU through the APOPIS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sendtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, F.L.P., Fischer, M., Funk, N. et al. High-efficiency gene transfer into cultured embryonic motoneurons using recombinant lentiviruses. Histochem Cell Biol 127, 439–448 (2007). https://doi.org/10.1007/s00418-006-0247-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0247-5

Keywords

Navigation