Skip to main content
Log in

Immunolocalization of tight junction proteins in blood vessels in human germinal matrix and cortex

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Brain development occurs in a specialized environment maintained by a blood–brain barrier (BBB). An important structural element of the BBB is the endothelial tight junction (TJ). TJs are present during the embryonic period, but BBB impermeability accrues over an extended gestational interval. In studies of human premature infants, we used immunomicroscopy to determine if amounts of the TJ proteins ZO-1, claudin and occludin increase with gestational age in vessels of germinal matrix (GM) and cortex. By 24 weeks postconception (PC), TJ proteins were present in both GM and cortical vessels, but immunoreactivity in the GM of the youngest subjects was less than in older subjects. At 24 weeks PC, TJ protein immunoreactivity in GM vessels was less than in cortical vessels suggesting that TJ maturation progresses along a superficial to deep brain axis. This concept correlates with conclusions from previous analyses of the expression of brain endothelial cell alkaline phosphatase (AP) activity. AP appears in cortical vessels before appearing in deep white matter and GM vessels. Together, these data indicate that differentiation of some functional specializations is still in progress in GM vessels during the third trimester. This maturation could relate to the pathogenesis of germinal matrix hemorrhage–intraventricular hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anstrom JA, Brown WR, Moody DM, Thore CR, Challa VR, Block SM (2002) Temporal expression pattern of cerebrovascular endothelial cell alkaline phosphatase during human gestation. J Neuropathol Exp Neurol 61:76–84

    PubMed  Google Scholar 

  • Anstrom JA, Thore CR, Moody DM, Challa VR, Block SM, Brown WR (2005a) Histological analysis of vascular patterns and connections in the germinal matrix of premature neonates. Neuroembryol 3:4–12

    Article  Google Scholar 

  • Anstrom JA, Thore CR, Moody DM, Challa VR, Block SM, Brown WR (2005b) Morphometric assessment of collagen accumulation in germinal matrix vessels of premature human neonates. Neuropathol Appl Neurobiol 31:181–190

    Article  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ballabh P, Hu F, Kumarasiri M, Braun A, Nedergaard M (2005) Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr Res 58:791–798

    Article  PubMed  CAS  Google Scholar 

  • Bass T, Singer G, Slusser J, Liuzzi FJ (1992) Radial glial interaction with cerebral germinal matrix capillaries in the fetal baboon. Exp Neurol 118:126–132

    Article  PubMed  CAS  Google Scholar 

  • Bauer HC, Bauer H (2000) Neural induction of the blood–brain barrier: still an enigma. Cell Mol Neurobiol 20:13–28

    Article  PubMed  CAS  Google Scholar 

  • Bell MA, Scarrow WG (1984) Staining for microvascular alkaline phosphatase in thick celloidin sections of nervous tissue: morphometric and pathological applications. Microvasc Res 27:189–203

    Article  PubMed  CAS  Google Scholar 

  • Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo. Neuroscience 86:1245–1257

    Article  PubMed  CAS  Google Scholar 

  • Davies DC (2002) Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200:639–646

    Article  PubMed  CAS  Google Scholar 

  • Dobrogowska DH, Vorbrodt AW (2004) Immunogold localization of tight junctional proteins in normal and osmotically-affected rat blood–brain barrier. J Mol Histol 35:529–539

    Article  PubMed  CAS  Google Scholar 

  • el Hafny B, Bourre JM, Roux F (1996) Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol 167:451–460

    Article  PubMed  CAS  Google Scholar 

  • Ghazi-Birry HS, Brown WR, Moody DM, Challa VR, Block SM, Reboussin DM (1997) Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 18:219–229

    PubMed  CAS  Google Scholar 

  • Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck MP (2004) Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315:157–166

    Article  PubMed  Google Scholar 

  • Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110(Pt 14):1603–1613

    PubMed  CAS  Google Scholar 

  • Kniesel U, Risau W, Wolburg H (1996) Development of blood–brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res 96:229–240

    Article  PubMed  CAS  Google Scholar 

  • Knust E, Bossinger O (2002) Composition and formation of intercellular junctions in epithelial cells. Science 298:1955–1959

    Article  PubMed  CAS  Google Scholar 

  • Lenn NJ, Whitmore L (1985) Gestational changes in the germinal matrix of the normal rhesus monkey fetus. Pediatr Res 19:130–135

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl) 100:323–331

    Article  CAS  Google Scholar 

  • Lippoldt A, Jansson A, Kniesel U, Andbjer B, Andersson A, Wolburg H, Fuxe K, Haller H (2000a) Phorbol ester induced changes in tight and adherens junctions in the choroid plexus epithelium and in the ependyma. Brain Res 854:197–206

    Article  CAS  Google Scholar 

  • Lippoldt A, Liebner S, Andbjer B, Kalbacher H, Wolburg H, Haller H, Fuxe K (2000b) Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. Neuroreport 11:1427–1431

    Article  CAS  Google Scholar 

  • Ment LR, Stewart WB, Ardito TA, Madri JA (1991) Beagle pup germinal matrix maturation studies. Stroke 22:390–395

    PubMed  CAS  Google Scholar 

  • Ment LR, Stewart WB, Ardito TA, Huang E, Madri JA (1992) Indomethacin promotes germinal matrix microvessel maturation in the newborn beagle pup. Stroke 23:1132–1137

    PubMed  CAS  Google Scholar 

  • Ment LR, Oh W, Ehrenkranz RA, Philip AG, Schneider K , Katz KH, Taylor KJ, Duncan CC, Makuch RW (1993) Risk period for intraventricular hemorrhage of the preterm neonate is independent of gestational age. Semin Perinatol 17:338–341

    PubMed  CAS  Google Scholar 

  • Ment LR, Stewart WB, Ardito TA, Madri JA (1995) Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res Dev Brain Res 84:142–149

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi H, Fujii A, Utoguchi N, Nakagawa S, Mayumi T (1995) Glial-conditioned medium elevates alkaline phosphatase activity in cultured bovine aortic endothelial cells. Microvasc Res 50:129–132

    Article  PubMed  CAS  Google Scholar 

  • Mollgard K, Saunders NR (1986) The development of the human blood–brain and blood–CSF barriers. Neuropathol Appl Neurobiol 12:337–358

    PubMed  CAS  Google Scholar 

  • Nakazato H, Deguchi M, Fujimoto M, Fukushima H (1997) Alkaline phosphatase expression in cultured endothelial cells of aorta and brain microvessels: induction by interleukin-6-type cytokines and suppression by transforming growth factor betas. Life Sci 61:2065–2072

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Saadoun S, Woodrow CJ, Davies DC, Costa-Martins P, Moss RF, Krishna S, Bell BA (2001) Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol 27:384–395

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Martinez AJ, Moossy J (1977) The fine structure of blood vessels of the telencephalic germinal matrix in the human fetus. Am J Anat 149:439–452

    Article  PubMed  CAS  Google Scholar 

  • Risau W, Hallmann R, Albrecht U (1986) Differentiation-dependent expression of proteins in brain endothelium during development of the blood–brain barrier. Dev Biol 117:537–545

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  • Saunders NR, Habgood MD, Dziegielewska KM (1999) Barrier mechanisms in the brain, II. Immature brain. Clin Exp Pharmacol Physiol 26:85–91

    Article  PubMed  CAS  Google Scholar 

  • Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35:155–164

    Article  PubMed  CAS  Google Scholar 

  • Stewart PA, Hayakawa K (1994) Early ultrastructural changes in blood–brain barrier vessels of the rat embryo. Brain Res Dev Brain Res 78:25–34

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (1998) Overcoming barriers in the study of tight junction functions: from occludin to claudin. Genes Cells 3:569–573

    Article  PubMed  CAS  Google Scholar 

  • Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, Bertossi M, Roncali L (2004) Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol 122:51–59

    Article  PubMed  CAS  Google Scholar 

  • Volpe JJ (2001) Neurology of the newborn, 4 edn. W.B. Saunders Co, Philadelphia

    Google Scholar 

  • Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 42:221–242

    Article  PubMed  CAS  Google Scholar 

  • Vorbrodt AW, Dobrogowska DH (2004) Molecular anatomy of interendothelial junctions in human blood–brain barrier microvessels. Folia Histochem Cytobiol 42:67–75

    PubMed  CAS  Google Scholar 

  • Vorbrodt AW, Lossinsky AS, Wisniewski HM (1986) Localization of alkaline phosphatase activity in endothelia of developing and mature mouse blood–brain barrier. Dev Neurosci 8:1–13

    PubMed  CAS  Google Scholar 

  • Vorbrodt AW, Dobrogowska DH, Tarnawski M (2001) Immunogold study of interendothelial junction-associated and glucose transporter proteins during postnatal maturation of the mouse blood–brain barrier. J Neurocytol 30:705–716

    Article  PubMed  CAS  Google Scholar 

  • Wakai S, Hirokawa N (1978) Development of the blood–brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:195–203

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B (2001) Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 307:77–80

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105:586–592

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Patricia Wood and Carolyn Cox for their expert technical assistance in the preparation of histological slides. The project described was supported by a gift from the Kulynych Family as well as by Grant Numbers NS 20618 and NS 36780 to DMM from the NIH, and grant 1064 from the March of Dimes to WRB. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Neurological Diseases and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Anstrom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anstrom, J.A., Thore, C.R., Moody, D.M. et al. Immunolocalization of tight junction proteins in blood vessels in human germinal matrix and cortex. Histochem Cell Biol 127, 205–213 (2007). https://doi.org/10.1007/s00418-006-0232-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0232-z

Keywords

Navigation