Skip to main content
Log in

From analog to digital: exploring cell dynamics with single quantum dots

  • Robert Feulgen Lecture
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Semiconductor quantum dots (QDs) have emerged as new fluorescent probes for biology. When combined with ultrasensitive optical techniques, they allow motions of individual biomolecules to be tracked in live cells with high signal-to-noise and over unprecedented durations. Single QD imaging readily offers a powerful tool to investigate the organization in cell membranes. Altogether QDs will contribute to more advanced biological imaging and enable new studies on the dynamics of cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Google Scholar 

  • Bobroff N (1986) Position measurement with a resolution and noise limited instrument. Rev Sci Instrum 57:1152–1157

    Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Google Scholar 

  • Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. NanoLetters 4:1827–1832

    Google Scholar 

  • Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cells experiments and organelles tracking. Adv Mater 16:961–966

    Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Google Scholar 

  • Groc L, Heine M, Cognet L, Brickley K, Stephenson FA, Lounis B, Choquet D (2004) Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7:695–696

    Google Scholar 

  • Ha T, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG, Weiss S (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci USA 96:893–898

    Google Scholar 

  • Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjager R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J 81:2639–2646

    Google Scholar 

  • Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    Google Scholar 

  • Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504

    Google Scholar 

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Google Scholar 

  • Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    Google Scholar 

  • Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282:1877–1882

    Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Google Scholar 

  • Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283:1670–1676

    Google Scholar 

  • Murase K, Fujiwara T, Umemura Y, Suzuki K, Iino R, Yamashita H, Saito M, Murakoshi H, Ritchie K, Kusumi A (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86:4075–4093

    Google Scholar 

  • Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86:1185–1200

    Google Scholar 

  • Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Google Scholar 

  • Schutz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Google Scholar 

  • Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932

    Google Scholar 

  • Shav-Tal Y, Singer RH, Darzacq X (2004) Imaging gene expression in single living cells. Nat Rev Mol Cell Biol 5:855–861

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Google Scholar 

  • Tardin C, Cognet L, Bats C, Lounis B, Choquet D (2003) Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 22:4656–4665

    Google Scholar 

  • Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Google Scholar 

  • Triller A, Choquet D (2005) Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move!. Trends Neurosci 28:133–139

    Google Scholar 

  • Tsien RY (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579:927–932

    Google Scholar 

  • Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T (2001) Single-molecule analysis of chemotactic signaling in dictyostelium cells. Science 294:864–867

    Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Google Scholar 

  • Verkman A (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27:27–33

    Google Scholar 

  • Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683

    Google Scholar 

  • Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Google Scholar 

Download references

Acknowledgements

I am indebted to Dr. Antoine Triller for many enlightening discussions and for the support provided by his laboratory. I am grateful to Sabine Lévi for her decisive contribution to the first single quantum dot tracking experiments. I thank all the members of the “Optics and Biology” group at Ecole Normale, as well as Laurent Cohen, Christophe Tribet, Valérie Marchi-Artzner, Giovanni Cappello, and Yohanns Bellaiche for their contributions and many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Dahan.

Additional information

Robert Feulgen Lecture 2005 presented at the Joint Meeting of the Society for Histochemistry and The Histochemical Society in Noordwijkerhout, The Netherlands

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahan, M. From analog to digital: exploring cell dynamics with single quantum dots. Histochem Cell Biol 125, 451–456 (2006). https://doi.org/10.1007/s00418-005-0105-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0105-x

Keywords

Navigation