Skip to main content

Advertisement

Log in

Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH–GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20°C for 2 h and then released by warming up to 37°C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH–GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

SNARE:

SNAP receptor

VAMPs:

Vesicle-associated membrane proteins

TI-VAMP:

Tetanus toxin-insensitive VAMP

hGH:

Human growth hormone

LAMP-1:

Lysosome-associated membrane protein 1

References

  • Advani RJ, Bae HR, Bock JB, Chao DS, Doung YC, Prekeris R, Yoo JS, Scheller RH (1998) Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J Biol Chem 273:10317–10324

    Article  PubMed  CAS  Google Scholar 

  • Advani RJ, Yang B, Prekeris R, Lee KC, Klumperman J, Scheller RH (1999) VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol 146:765–776

    Article  PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G, Kutay U, Chahoud I, Rapoport T, Wiedenmann B (1996) Synaptobrevin is essential for secretion but not for the development of synaptic processes. Eur J Cell Biol 70:1–11

    Article  PubMed  CAS  Google Scholar 

  • Alberts P, Rudge R, Hinners I, Muzerelle A, Martinez-Arca S, Irinopoulou T, Marthiens V, Tooze S, Rathjen F, Gaspar P, Galli T (2003) Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion. Mol Biol Cell 14:4207–4220

    Article  PubMed  CAS  Google Scholar 

  • Burri L, Lithgow T (2004) A complete set of SNAREs in yeast. Traffic 5:45–52

    Article  PubMed  CAS  Google Scholar 

  • Deitcher DL, Ueda A, Stewart BA, Burgess RW, Kidokoro Y, Schwarz TL (1998) Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 18:2028–2039

    PubMed  CAS  Google Scholar 

  • Fix M, Melia TJ, Jaiswal JK, Rappoport JZ, You D, Sollner TH, Rothman JE, Simon SM (2004) Imaging single membrane fusion events mediated by SNARE proteins. Proc Natl Acad Sci USA 101:7311–7316

    Article  PubMed  CAS  Google Scholar 

  • Fujita-Yoshigaki J, Dohke Y, Hara-Yokoyama M, Kamata Y, Kozaki S, Furuyama S, Sugiya H (1996) Vesicle-associated membrane protein 2 is essential for cAMP-regulated exocytosis in rat parotid acinar cells. The inhibition of cAMP-dependent amylase release by botulinum neurotoxin B. J Biol Chem 271:13130–13134

    Article  PubMed  CAS  Google Scholar 

  • Gaisano HY, Sheu L, Foskett JK, Trimble WS (1994) Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem 269:17062–17066

    PubMed  CAS  Google Scholar 

  • Galli T, Zahraoui A, Vaidyanathan VV, Raposo G, Tian JM, Karin M, Niemann H, Louvard D (1998) A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell 9:1437–1448

    PubMed  CAS  Google Scholar 

  • Gerst JE (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci 55:707–734

    Article  PubMed  CAS  Google Scholar 

  • Hey JC (2001) SNARE complex structure and function. Exp Cell Res 271:10–21

    Article  PubMed  CAS  Google Scholar 

  • Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:120–144

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Ahmed M, Melia TJ, Sollner TH, Mayer T, Rothman JE (2003) Fusion of cells by flipped SNAREs. Science 300:1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Huang AY, Castle AM, Hinton BT, Castle JD (2001) Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J Biol Chem 276:22296–22306

    Article  PubMed  CAS  Google Scholar 

  • Ikonen E, Tagaya M, Ullrich O, Montecucco C, Simons K (1995) Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 81:571–580

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Nashida T, Shimomura H (2001) mRNA expression of membrane-fusion-related proteins in rat parotid gland. Arch Oral Biol 46:955–962

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Nashida T, Yoshie S, Shimomura H (2003) Intracellular localisation of SNARE proteins in rat parotid acinar cells: SNARE complexes on the apical plasma membrane. Arch Oral Biol 48:597–604

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Nashida T, Shimomura H (2004) Roles of Munc18-3 in amylase release from rat parotid acinar cells. Arch Biochem Biophys 422:175–182

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Toomre D, Diaz E, White J, Simons K (2001) Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol 3:140–149

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Mizoguchi A, Ide C (2003) Regulation of growth cone extension by SNARE proteins. J Histochem Cytochem 51:429–433

    PubMed  CAS  Google Scholar 

  • Lafont F, Verkade P, Galli T, Wimmer C, Louvard D, Simons K (1999) Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci USA 96:3734–3738

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Arca S, Alberts P, Zahraoui A, Louvard D, Galli T (2000) Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 149:889–900

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G (1994) Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 13:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi H, Yamamori S, Ono K, Aoyagi K, Kondo S, Takahashi M (2001) A src family tyrosine kinase inhibits neurotransmitter release from neuronal cells. Proc Natl Acad Sci USA 98:10930–10935

    Article  PubMed  CAS  Google Scholar 

  • Osen-Sand A, Staple JK, Naldi E, Schiavo G, Rossetto O, Petitpierre S, Malgaroli A, Montecucco C, Catsicas S (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol 367:222–234

    Article  PubMed  CAS  Google Scholar 

  • Padfield PJ (2000) A tetanus toxin sensitive protein other than VAMP 2 is required for exocytosis in the pancreatic acinar cell. FEBS Lett 484:129–132

    Article  PubMed  CAS  Google Scholar 

  • Prekeris R, Yang B, Oorschot V, Klumperman J, Scheller RH (1999) Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol Biol Cell 10:3891–3908

    PubMed  CAS  Google Scholar 

  • Salaun C, James DJ, Greaves J, Chamberlain LH (2004) Plasma membrane targeting of exocytic SNARE proteins. Biochim Biophys Acta 1693:81–89

    Article  PubMed  CAS  Google Scholar 

  • Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122

    Article  PubMed  CAS  Google Scholar 

  • Takuma T, Tagaya M, Ichida T (1997) Evidence for the putative docking/fusion complex of exocytosis in parotid acinar cells. FEBS Lett 404:34–36

    Article  PubMed  CAS  Google Scholar 

  • Takuma T, Arakawa T, Tajima Y (2000) Interaction of SNARE proteins in rat parotid acinar cells. Arch Oral Biol 45:369–375

    Article  PubMed  CAS  Google Scholar 

  • Takuma T, Arakawa T, Okayama M, Mizoguchi I, Tanimura A, Tajima Y (2002) Trafficking of green fluorescent protein-tagged SNARE proteins in HSY cells. J Biochem (Tokyo) 132:729–735

    CAS  Google Scholar 

  • Wacker I, Kaether C, Kromer A, Migala A, Almers W, Gerdes HH (1997) Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci 110:1453–1463

    PubMed  CAS  Google Scholar 

  • Wang CC, Ng CP, Lu L, Atlashkin V, Zhang W, Seet LF, Hong W (2004) A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev Cell 7:359–371

    Article  PubMed  CAS  Google Scholar 

  • Wong SH, Zhang T, Xu Y, Subramaniam VN, Griffiths G, Hong W (1998) Endobrevin, a novel synaptobrevin/VAMP-like protein preferentially associated with the early endosome. Mol Cell 9:1549–1563

    CAS  Google Scholar 

  • Yang C, Mora S, Ryder JW, Coker KJ, Hansen P, Allen L-A, Pessin JE (2001) VAMP3 null mice display normal constitutive, insulin- and exercise-regulated vesicle trafficking. Mol Cell Biol 21:1573–1580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Yosuke Tojyo, as well as Drs. Takao Morita and Akihiko Nezu, Department of Dental Pharmacology, Health Sciences University, for helpful discussion and also Ms. Tamaki Tamaki-Yokohama and Mr. Kouhei Taima for their technical assistance. This work was supported in part by the Academic Sciences Frontier Project and by a grant-in-aid for scientific research (No.15591973 to T. T.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taishin Takuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oishi, Y., Arakawa, T., Tanimura, A. et al. Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells. Histochem Cell Biol 125, 273–281 (2006). https://doi.org/10.1007/s00418-005-0068-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0068-y

Keywords

Navigation