Skip to main content
Log in

Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The replication of eukaryotic chromosomes takes place throughout S phase, but little is known how this process is organized in space and time. Early and late replicating chromosomal domains appear to localize to distinct spatial compartments of the nucleus where DNA synthesis can take place at defined times during S phase. In general, transcriptionally active chromatin replicates early in S phase whereas transcriptionally inactive chromatin replicates later. Here we provide evidence for significant deviation from this dogma in mouse NIH3T3 cells. While the bulk pericentromeric heterochromatin replicates exclusively during mid to late S phase, centromeric DNA domains associated with constitutive kinetochore proteins are replicated throughout all stages of S phase. On an average, 12±4% of centromeres replicate in early S phase. Early replication of a subset of centromeres was also detected in living C2C12 murine cells. Thus, in contrast to expectation, late replication is not an obligatory feature of centromeric heterochromatin in murine cells and it does not determine their ‘heterochromatic state’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad K, Henikoff S (2001) Centromeres are specialized replication domains in heterochromatin. J Cell Biol 153:101–109

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA Early Edition:1–8

  • Alcobia I, Dilao R, Parreira L (2000) Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 95:1608–1615

    PubMed  CAS  Google Scholar 

  • Bostock CJ, Prescott DM (1971) Shift in buoyant density of DNA during the synthetic period and its relation to euchromatin and heterochromatin in mammalian cells. J Mol Biol 60:151–162

    Article  PubMed  CAS  Google Scholar 

  • Alexandrova O, Solovei I, Cremer T, David CN (2003) Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra. Chromosoma 112:190–200

    Article  PubMed  CAS  Google Scholar 

  • Bravo R, Macdonald-Bravo H (1987) Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol 105:1549–1554

    Article  PubMed  CAS  Google Scholar 

  • Calza RE, Eckhardt LA, Delgiudice T, Schildkraut CL (1984) Changes in gene position are accompanied by a change in time of replication. Cell 36:689–696

    Article  PubMed  CAS  Google Scholar 

  • Celis JE, Celis A (1985) Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc Natl Acad Sci U S A 82:3262–3266

    Article  PubMed  CAS  Google Scholar 

  • Cardoso MC, Joseph C, Rahn H-P, Reusch R, Nadal-Ginard B, Leonhardt H (1997) Mapping and use of a sequence that targets DNA ligase I to sites of DNA replication in vivo. J Cell Biol 139:579–587

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14:200–204

    Article  PubMed  CAS  Google Scholar 

  • Diffley JF, Labib K (2002) The chromosome replication cycle. J Cell Sci 115:869–872

    PubMed  CAS  Google Scholar 

  • Dillon N (2004) Heterochromatin structure and function. Biol Cell 96:631–637

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova DS, Berezney R (2002) The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 115:4037–4051

    Article  PubMed  CAS  Google Scholar 

  • Dooley DC, Ozer HL (1977) Replication kinetics of three DNA sequence families in synchronized mouse cells. J Cell Physiol 90:337–350

    Article  PubMed  CAS  Google Scholar 

  • Easwaran HP, Leonhardt H, Cardoso MC (2005) Cell cycle markers for live cell analyses. Cell Cycle 4:453–455

    PubMed  CAS  Google Scholar 

  • Fox MH, Arndt-Jovin DJ, Jovin TM, Baumann PH, Robert-Nicoud M (1991) Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J Cell Sci 99:247–253

    PubMed  Google Scholar 

  • Fuchs J, Strehl S, Brandes A, Schweizer D, Schubert I (1998) Molecular-cytogenetic characterization of the Vicia faba genome- heterochromatin differentiation, replication patterns and sequence localization. Chrom Res 6:219–230

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM (2001) Positions of potential: nuclear organization and gene expression. Cell 104:639–642

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Allan J (2001) Distinctive higher-order chromatin structure at mammalian centromeres. Proc Natl Acad Sci USA 98:11949–11954

    Article  PubMed  CAS  Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224:686–692

    Article  PubMed  CAS  Google Scholar 

  • Goren A, Cedar H (2003) Replicating by the clock. Nat Rev Mol Cell Biol 4:25–32

    Article  PubMed  CAS  Google Scholar 

  • Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM (1996) The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 134:1349–1363

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Babcock J, Rudd MK, Chadwick B, Willard HF (2004) Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 5:R89

    Article  PubMed  Google Scholar 

  • Guenatri M, Bailly D, Maison C, Almouzni G, (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505

    Article  PubMed  CAS  Google Scholar 

  • Guillot PV, Sonya M, Pombo A (2005) The organization of transcription in the nucleus of mammalian cells. In: Hemmerich P, Diekmann S (eds) Visions of the cell nucleus. American Scientific Publishers, Stevenson Ranch, pp 95–100

    Google Scholar 

  • Haaf T, Schmid M (1989) Centromeric association and non-random distribution of centromeres in human tumour cells. Hum Genet 81:137–143

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1994) Structural analysis of alpha-satellite and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3:697–709

    Article  PubMed  CAS  Google Scholar 

  • Hatton KS, Dhar V, Brown EH, Iqbal MA, Stuart S, Didamo VT, Schildkraut CL (1988) Replication program of active and inactive multigene families in mammalian cells. Mol Cell Biol 8:2149–2158

    PubMed  CAS  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. I Jahrb Wiss Bot 69:762–818

    Google Scholar 

  • Hemmerich S, Diekmann S (eds) (2005) Visions of the cell nucleus. American Scientific Publishers, Stevenson Ranch

  • Hollo G, Kereso J, Praznovszky T, Cserpan I, Fodor K, Katona R, Csonka E, Fatyol K, Szeles A, Szalay AA, Hadlaczky G (1996) Evidence for a megareplicon covering megabases of centromeric chromosome segments. Chromosome Res 4:240–247

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Jackson DA, Cook PR (1994) Replication factories and nuclear bodies: the ultrastructural characterization of replication sites during the cell cycle. J Cell Sci 107:2191–2202

    PubMed  Google Scholar 

  • Hubert J, Bourgeois CA (1986) The nuclear skeleton and the spatial arrangement of chromosomes in the interphase nucleus of vertebrate somatic cells. Hum Genet 74:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC (1975) A possible function of constitutive heterochromatin: the bodyguard hypothesis. Genetics 79:137–150

    PubMed  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Jin Q, Trelles-Sticken E, Scherthan H, Loidl J (1998) Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141:21–29

    Article  PubMed  CAS  Google Scholar 

  • Kiesslich A, von Mikecz A, Hemmerich P (2002) Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J Struct Biol 140:1671–1679

    Article  Google Scholar 

  • Kill IR, Bridger JM, Campbell KH, Maldonado-Codina G, Hutchison CJ (1991) The timing of the formation and usage of replicase clusters in S-phase nuclei of human diploid fibroblasts. J Cell Sci 100:869–876

    PubMed  Google Scholar 

  • Kim SM, Huberman JA (2001) Regulation of replication timing in fission yeast. EMBO J 20:6115–6126

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Dubey DD, Huberman JA (2003) Early-replicating heterochromatin. Genes Dev 17:330–335

    Article  PubMed  CAS  Google Scholar 

  • Koberna K, Ligasova A, Malinsky J, Pliss A, Siegel AJ, Cvackova Z, Fidlerova H, Masata M, Fialova M, Raska I, Berezney R (2005) Electron microscopy of DNA replication in 3-D: evidence for similar-sized replication foci throughout S-phase. J Cell Biochem 94:126–138

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 27:865–873

    Article  Google Scholar 

  • Leonhardt H, Rahn H-P, Weinzerl P, Sporbert A, Cremer T, Zink D, Cardoso MC (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149:271–279

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre J-M, Méchali M (2005) Organisation and Dynamics of the Cell Nucleus for DNA Replication. In: Hemmerich P, Diekmann S (eds) Visions of the cell nucleus. American Scientific Publishers, Stevenson Ranch, pp 37–51

    Google Scholar 

  • Lima-de-Faria A, Nilsson B, Cave D, Puga A, Jaworska H (1968) Tritium labelling and cytochemistry of extra DNA in Acheta. Chromosoma 25:1–20

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng PC, Meng C, Berezney R (1998) Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol 143:1415–1425

    Article  PubMed  CAS  Google Scholar 

  • Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103:857–862

    PubMed  CAS  Google Scholar 

  • Manuelidis L (1984) Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci U S A 81:3123–3127

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto LH, Gerbi SA (1982) Early initiation of bovine satellite I DNA replication. Exp Cell Res 140:47–54

    Article  PubMed  CAS  Google Scholar 

  • Mazzotti G, Rizzoli R, Galanzi A, Papa S, Vitale M, Falconi M, Neri LM, Zini N, Maraldi NM (1990) High-resolution detection of newly synthesized DNA by anti-bromodeoxyuridine antibodies identifies specific chromatin domains. J Histochem Cytochem 38:13–22

    PubMed  CAS  Google Scholar 

  • McCaroll RM, Fangman WL (1988) Time of replication of yeast centromeres and telomeres. Cell 54:505–513

    Article  Google Scholar 

  • Nakamura H, Morita T, Sato C (1986) Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res165:291–297

    Article  Google Scholar 

  • Nakayasu H, Berezney R (1989) Mapping replicational sites in the eucaryotic cell nucleus. J Cell Biol 108:1–11

    Article  PubMed  CAS  Google Scholar 

  • Neri LM, Mazzotti G, Capitani S, Maraldi NM, Cinti C, Baldini N, Rana R, Martelli AM (1992) Nuclear matrix-bound replicational sites detected in situ by 5-bromodeoxyuridine. Histochemistry 98:19–32

    Article  PubMed  CAS  Google Scholar 

  • O'Keefe RT, Henderson SC, Spector D (1992) Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific α-satellite DNA sequences. J Cell Biol 116:1095–1110

    Article  PubMed  Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Philimonenko AA, Jackson DA, Hodny Z, Janacek J, Cook PR, Hozak P (2004) Dynamics of DNA replication: an ultrastructural study. J Struct Biol 148:279–289

    Article  PubMed  CAS  Google Scholar 

  • Pidoux AL, Allshire RC (2005) The role of heterochromatin in centromere function. Philos Trans R Soc Lond B Biol Sci 360:569–579

    Article  PubMed  CAS  Google Scholar 

  • Raska I, Koberna K, Jarnik M, Petrasovicova V, Bednar J, Raska K Jr, Bravo R (1989) Ultrastructural immunolocalization of cyclin/PCNA in synchronized 3T3 cells. Exp Cell Res 184:81–89

    Article  PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Schubeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M (2002) Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 32:438–442

    Article  PubMed  Google Scholar 

  • Sharp A, Robinson DO, Jacobs P (2001) Absence of correlation between late-replication and spreading of X inactivation in an X; autosome translocation. Hum Genet 109:295–302

    Article  PubMed  CAS  Google Scholar 

  • Shelby RD, Hahn KM, Sullivan KF (1996) Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol 135:545–557

    Article  PubMed  CAS  Google Scholar 

  • Shelby RD, Monire K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Somanathan S, Suchyna TM, Siegel AJ, Berezney R (2001) Targeting of PCNA to sites of DNA replication in the mammalian cell nucleus. J Cell Biochem 81:56–67

    Article  PubMed  CAS  Google Scholar 

  • Sparvoli E, Levi M, Rossi E (1994) Replicon clusters may form structurally stable complexes of chromatin and chromosomes. J Cell Sci 107:3097–3103

    PubMed  CAS  Google Scholar 

  • Spector DL (1993) Macromolecular domains within the cell nucleus. Annu Rev Cell Biol 9:265–315

    Article  PubMed  CAS  Google Scholar 

  • Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC (2002) DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10:1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen G (2001) Centromere identity in Drosophila is not determined in vivo by replication timing. J Cell Biol 154:683–690

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Ten-Hagen KG, Gilbert DM, Willard HF, Cohen SN (1990) Replication timing of DNA sequences associated with human centromeres and telomeres. Mol Cell Biol 10:6348–6355

    PubMed  CAS  Google Scholar 

  • Wallrath LL (1998) Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev 8(2):147–153

    Article  PubMed  CAS  Google Scholar 

  • Westermann KA, Leboulch P (1996) Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci USA 93:8971–8976

    Article  Google Scholar 

  • van Dierendonck JH, Keyzer R, van de Velde CJ, Cornelisse CJ (1989) Subdivision of S-phase by analysis of nuclear 5-bromodeoxyuridine staining patterns. Cytometry 10:143–150

    Article  PubMed  Google Scholar 

  • Vig BK, Broccoli D (1988) Sequence of centromere separation: differential replication of pericentric heterochromatin in multicentric chromosomes. Chromosoma 96:311–317

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Paweletz N, Schroeter D (1993) The centromere-kinetochore complex in cancer. Canc J 6:243–252

    Google Scholar 

  • von Mikecz A, Hemmerich P (2005) Subnuclear pathology. In: Hemmerich P, Diekmann S (eds) Visions of the cell nucleus. American Scientific Publishers, Stevenson Ranch, pp 184–203

    Google Scholar 

  • Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 24:6620–6630

    Article  PubMed  CAS  Google Scholar 

  • Wright WE, Tesmer VM, Liao ML, Shay JW (1999) Normal human telomeres are not late replicating. Exp Cell Res 251:492–499

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Terry AV, Singh PB, Gilbert DM (2005) Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 16:2872–2881

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We appreciate very much the helpful discussions with Stephan Diekmann and are grateful to Xenia Reich who eye-selected the mid-nucleus confocal sections from time-lapse analysis and assembled them into a movie. H.-P. Rahn was supported by the European Union (ESF Program). This work was supported by the Deutsche Forschungsgemeinschaft (grant HE 2484/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hemmerich.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidtkamp-Peters, S., Rahn, HP., Cardoso, M.C. et al. Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem Cell Biol 125, 91–102 (2006). https://doi.org/10.1007/s00418-005-0063-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0063-3

Keywords

Navigation