Skip to main content
Log in

Haemochromatosis protein is expressed on the terminal web of enterocytes in proximal small intestine of the rat

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The haemochromatosis protein (HFE) is an important regulator of body iron stores. In the liver, HFE is required for appropriate expression of hepcidin, a humoral mediator of iron absorption. HFE is also present in enterocytes, though its function in the intestine is unknown; it is not intrinsically required for iron absorption, but can augment iron absorption when over-expressed—independent of hepcidin regulation by the liver. In this study, an antibody was raised against rat HFE and validated by enzyme-linked immunosorbent assay, Western blot and quenching of antibody function by the immunising peptide. The sub-cellular location of HFE in enterocytes of iron-deficient and control rats was determined by double-labelling experiments with markers for the microvillus membrane, terminal web, early endosomes, lysosomes and the transferrin receptor. Parallel studies were performed for the primary iron absorption protein, divalent metal transporter 1 (DMT1). HFE co-localised exclusively with the terminal web of intestinal enterocytes. HFE expression was increased in iron deficiency, consistent with a second regulatory role for HFE in iron absorption, independent of hepcidin from the liver. DMT1 was localised primarily on the microvillus membrane, but did partially co-localise with HFE raising the possibility that the two proteins may interact to regulate iron absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  PubMed  CAS  Google Scholar 

  • Ameen NA, Salas PJ (2000) Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium. Traffic 1:76–83

    Article  PubMed  CAS  Google Scholar 

  • Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  PubMed  CAS  Google Scholar 

  • Arredondo M, Munoz P, Mura CV, Nunez MT (2001) HFE inhibits apical iron uptake by intestinal epithelial (Caco-2) cells. Faseb J 15:1276–1278

    PubMed  CAS  Google Scholar 

  • Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC (2004) Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116:457–466

    Article  PubMed  CAS  Google Scholar 

  • Berryman M, Rodewald R (1995) Beta 2-microglobulin co-distributes with the heavy chain of the intestinal IgG-Fc receptor throughout the transepithelial transport pathway of the neonatal rat. J Cell Sci 108(Pt 6):2347–2360

    PubMed  CAS  Google Scholar 

  • Beutler E, Gelbart T, West C, Lee P, Adams M, Blackstone R, Pockros P, Kosty M, Venditti CP, Phatak PD et al (1996) Mutation analysis in hereditary hemochromatosis (discussion 194a–194b). Blood Cells Mol Dis 22:187–194

    Article  PubMed  CAS  Google Scholar 

  • Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673

    Article  PubMed  CAS  Google Scholar 

  • Brown EB Jr, Justus BW (1958) In vitro absorption of radioiron by everted pouches of rat intestine. Am J Physiol 194:319–326

    PubMed  CAS  Google Scholar 

  • Byrnes V, Barrett S, Ryan E, Kelleher T, O’Keane C, Coughlan B, Crowe J (2002) Increased duodenal DMT-1 expression and unchanged HFE mRNA levels in HFE-associated hereditary hemochromatosis and iron deficiency. Blood Cells Mol Dis 29:251–260

    Article  PubMed  CAS  Google Scholar 

  • Conrad ME, Weintraub LR, Crosby WH (1964) The role of the intestine in iron kinetics. J Clin Invest 43:963–974

    Article  PubMed  CAS  Google Scholar 

  • Crosby WH, Conrad ME Jr, Wheby MS (1963) The rate of iron accumulation in iron storage disease. Blood 22:429–440

    PubMed  CAS  Google Scholar 

  • De Almeida SF, Carvalho IF, Cardoso CS, Cordeiro JV, Azevedo JE, Neefjes J, De Sousa M (2005) HFE crosstalks with the MHC class I antigen presentation pathway. Blood

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  PubMed  CAS  Google Scholar 

  • Fath KR, Mamajiwalla SN, Burgess DR (1993) The cytoskeleton in development of epithelial cell polarity. J Cell Sci Suppl 17:65–73

    PubMed  CAS  Google Scholar 

  • Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A, et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Tsuchihashi Z, Irrinki A, Lee VK, Mapa FA, Morikang E, Prass CE, Starnes SM, Wolff RK, Parkkila S, et al (1997) The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 272:14025–14028

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Penny DM, Irrinki A, Lee VK, Lebron JA, Watson N, Tsuchihashi Z, Sigal E, Bjorkman PJ, Schatzman RC (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 95:1472–1477

    Article  PubMed  CAS  Google Scholar 

  • Fergelot P, Ropert-Bouchet M, Abgueguen E, Orhant M, Radosavljevic M, Grimber G, Jouan H, Le Gall JY, Mosser J, Gilfillan S, Bahram S (2002) Iron overload in mice expressing HFE exclusively in the intestinal villi provides evidence that HFE regulates a functional cross-talk between crypt and villi enterocytes. Blood Cells Mol Dis 28:348–360

    Article  PubMed  Google Scholar 

  • Fleming MD, Trenor CC 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16:383–386

    PubMed  CAS  Google Scholar 

  • Gordon JI, Elshourbagy N, Lowe JB, Liao WS, Alpers DH, Taylor JM (1985) Tissue specific expression and developmental regulation of two genes coding for rat fatty acid binding proteins. J Biol Chem 260:1995–1998

    PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC (2005) Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Han O, Fleet JC, Wood RJ (1999) Reciprocal regulation of HFE and Nramp2 gene expression by iron in human intestinal cells. J Nutr 129:98–104

    PubMed  CAS  Google Scholar 

  • Howe CL, Granger BL, Hull M, Green SA, Gabel CA, Helenius A, Mellman I (1988) Derived protein sequence, oligosaccharides, and membrane insertion of the 120-kDa lysosomal membrane glycoprotein (lgp120): identification of a highly conserved family of lysosomal membrane glycoproteins. Proc Natl Acad Sci USA 85:7577–7581

    Article  PubMed  CAS  Google Scholar 

  • Hull BE, Staehelin LA (1979) The terminal web. A reevaluation of its structure and function. J Cell Biol 81:67–82

    Article  PubMed  CAS  Google Scholar 

  • Jazwinska EC, Cullen LM, Busfield F, Pyper WR, Webb SI, Powell LW, Morris CP, Walsh TP (1996) Haemochromatosis and HLA-H. Nat Genet 14:249–251

    Article  PubMed  CAS  Google Scholar 

  • Jouanolle AM, Gandon G, Jezequel P, Blayau M, Campion ML, Yaouanq J, Mosser J, Fergelot P, Chauvel B, Bouric P, et al (1996) Haemochromatosis and HLA-H. Nat Genet 14:251–252

    Article  PubMed  CAS  Google Scholar 

  • Kelleher T, Ryan E, Barrett S, Sweeney M, Byrnes V, O’Keane C, Crowe J (2004) Increased DMT1 but not IREG1 or HFE mRNA following iron depletion therapy in hereditary haemochromatosis. Gut 53:1174–1179

    Article  PubMed  CAS  Google Scholar 

  • Laftah AH, Ramesh B, Simpson RJ, Solanky N, Bahram S, Schumann K, Debnam ES, Srai SK (2004) Effect of hepcidin on intestinal iron absorption in mice. Blood 103:3940–3944

    Article  PubMed  CAS  Google Scholar 

  • Leeson TS (1982) The terminal web of the duodenal enterocyte. J Anat 134 (Pt 4):653–666

    PubMed  CAS  Google Scholar 

  • Lewis V, Green SA, Marsh M, Vihko P, Helenius A, Mellman I (1985) Glycoproteins of the lysosomal membrane. J Cell Biol 100:1839–1847

    Article  PubMed  CAS  Google Scholar 

  • Ludwiczek S, Theurl I, Artner-Dworzak E, Chorney M, Weiss G (2004) Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability. J Mol Med 82:373–382

    Article  PubMed  CAS  Google Scholar 

  • McCord JM (1998) Iron, free radicals, and oxidative injury. Semin Hematol 35:5–12

    PubMed  CAS  Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  • Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EP, Toh BH (1995) EEA1, an early endosome-associated protein. J Biol Chem 270:13503–13511

    Article  PubMed  CAS  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  • Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 98:8780–8785

    Article  PubMed  CAS  Google Scholar 

  • Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Waheed A, Britton RS, Feder JN, Tsuchihashi Z, Schatzman RC, Bacon BR, Sly WS (1997) Immunohistochemistry of HLA-H, the protein defective in patients with hereditary hemochromatosis, reveals unique pattern of expression in gastrointestinal tract. Proc Natl Acad Sci USA 94:2534–2539

    Article  PubMed  CAS  Google Scholar 

  • Quaroni A, Isselbacher KJ (1985) Study of intestinal cell differentiation with monoclonal antibodies to intestinal cell surface components. Dev Biol 111:267–279

    Article  PubMed  CAS  Google Scholar 

  • Rivera S, Nemeth E, Gabayan V, Lopez MA, Farshidi D, Ganz T (2005) Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood

  • Thomas C, Oates PS (2002) IEC-6 cells are an appropriate model of intestinal iron absorption in rats. J Nutr 132:680–687

    PubMed  CAS  Google Scholar 

  • Trinder D, Oates PS, Thomas C, Sadleir J, Morgan EH (2000) Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46:270–276

    Article  PubMed  CAS  Google Scholar 

  • Waheed A, Parkkila S, Zhou XY, Tomatsu S, Tsuchihashi Z, Feder JN, Schatzman RC, Britton RS, Bacon BR, Sly WS (1997) Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci USA 94:12384–12389

    Article  PubMed  CAS  Google Scholar 

  • Waheed A, Parkkila S, Saarnio J, Fleming RE, Zhou XY, Tomatsu S, Britton RS, Bacon BR, Sly WS (1999) Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc Natl Acad Sci USA 96:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Waheed A, Grubb JH, Zhou XY, Tomatsu S, Fleming RE, Costaldi ME, Britton RS, Bacon BR, Sly WS (2002) Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 99:3117–3122

    Article  PubMed  CAS  Google Scholar 

  • Yamaji S, Sharp P, Ramesh B, Srai SK (2004) Inhibition of iron transport across human intestinal epithelial cells by hepcidin. Blood 104:2178–2180

    Article  PubMed  CAS  Google Scholar 

  • Yeh KY, Yeh M, Glass J (2004) Hepcidin regulation of ferroportin 1 expression in the liver and intestine of the rat. Am J Physiol Gastrointest Liver Physiol 286:G385–G394

    Article  PubMed  CAS  Google Scholar 

  • Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE et al (1998) HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci USA 95:2492–2497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the NH&MRC of Australia for grant#211940, Alan Light for technical assistance, Deborah Trinder for the DMT1 antibody, Andrea Quaroni for the lactase antibody and Ira Mellman for the Lamp1 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Oates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, A.R., Thomas, C., Sadlier, J. et al. Haemochromatosis protein is expressed on the terminal web of enterocytes in proximal small intestine of the rat. Histochem Cell Biol 125, 283–292 (2006). https://doi.org/10.1007/s00418-005-0060-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0060-6

Keywords

Navigation