Skip to main content

Advertisement

Log in

JNK/ERK–AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Chondro-osteogenesis and subsequently skeletal morphology are greatly influenced by mechanical loads. The exact mechanism(s) by which mechanical stimuli are transduced in chondrocytes remains obscure and appears to be equally complex with similar signal transducing systems. Here we investigated whether and to what extent the MAPK (JNK/ERK)–AP-1/Runx2 signaling pathways are engaged in this phenomenon, and assessed their involvement in the functional biology of articular cartilage. For this purpose, 14-day-old female Wistar rats were divided into 2 groups: the first group was fed hard diet (simulating physiologic temporomandibular joint (TMJ) loading), while the second group was fed soft diet (reduced TMJ loading). On day 21 (experiment initiation day − weaning day), biopsies from condyles of both groups were obtained after 6, 12 and 48 h of functional TMJ loading. Immunohistochemical methodology was employed to evaluate the expression levels of pc-Jun, c-Fos, JNK2, p-JNK, p-ERK and Runx2 due to alteration in functional load. Our data demsonstrate that the protein levels of all the aforementioned molecules were markedly increased in animals fed with the hard diet, throughout the experimental procedure. These results indicate that functional cartilage loading induces the AP-1 and Runx2 transcription factors through the JNK and ERK MAPK cascades. In as much as the above signaling mediators/effectors are considered to be crucial in the differentiation/maturation process of cartilage tissue, we pose that functional mechanical loading of condylar cartilage serves to “fine tune” chondroblastic differentiation/maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1072:129–157

    PubMed  CAS  Google Scholar 

  • Basdra EK, Huber L, Komposch G, Papavassiliou AG (1994) Mechanical loading triggers specific biochemical responses in mandibular condylar chondrocytes. Biochim Biophys Acta 1222:315–322

    Article  PubMed  CAS  Google Scholar 

  • Beaupre GS, Stevens SS, Carter DR (2000) Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J Rehabil Res Dev 37:145–151

    PubMed  CAS  Google Scholar 

  • Carter DR, Orr TE, Fyhrie D, Schurman DJ (1987) Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop 219:237–250

    PubMed  Google Scholar 

  • D’Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC (2002) Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem 277:816–822

    Article  PubMed  CAS  Google Scholar 

  • Ducy P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219:461–471

    Article  PubMed  CAS  Google Scholar 

  • Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  PubMed  CAS  Google Scholar 

  • Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T (2000) Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 275:8695–8702

    Article  PubMed  CAS  Google Scholar 

  • Enomoto-Iwamoto M, Enomoto H, Komori T, Iwamoto M (2001) Participation of Cbfa1 in regulation of chondrocyte maturation. Osteoarthritis Cartilage 9:S76–S84

    Article  PubMed  Google Scholar 

  • Fanning PJ, Emkey GE, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 278:50940–50948

    Article  PubMed  CAS  Google Scholar 

  • Franceschi RT, Xiao G (2003) Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88:446–454

    Article  PubMed  CAS  Google Scholar 

  • Graber LW (1977) Chin cup therapy for mandibular prognathism. Am J Orthod 72:23–41

    Article  PubMed  CAS  Google Scholar 

  • Heegaard JH, Beaupre G, Carter DR (1999) Mechanically modulated cartilage growth may regulate joint surface morphogenesis. J Orthop Res 17:509–517

    Article  PubMed  CAS  Google Scholar 

  • Hipskind RA, Bilbe G (1998) MAP kinase signaling cascades and gene expression in osteoblasts. Front Biosci 3:D804–D816

    PubMed  CAS  Google Scholar 

  • Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290

    Article  PubMed  CAS  Google Scholar 

  • Ionescu AM, Schwarz EM, Vinson C, Puzas JE, Rosier R, Reynolds PR, O’Keefe J (2001) PTHrP modulates chondrocyte differentiation through AP-1 and CREB signaling. J Biol Chem 15:11639–11647

    Article  Google Scholar 

  • Ito Y, Miyazono K (2003) RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr Opin Genet Dev 13:43–47

    Article  PubMed  CAS  Google Scholar 

  • Jessop HL, Rawlinson SC, Pitsillides AA, Lanyon LE (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31:186–194

    Article  PubMed  CAS  Google Scholar 

  • Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    PubMed  CAS  Google Scholar 

  • Kim IS, Otto F, Zabel B, Mundlos S (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80:159–170

    Article  PubMed  CAS  Google Scholar 

  • Kletsas D, Basdra EK, Papavassiliou AG (2002) Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells. J Cell Physiol 190:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kloen P, Di Paola M, Borens O, Richmond L, Perino G, Helfet DL, Goumans MJ (2003) BMP signaling components are expressed in human fracture callus. Bone 33:362–371

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg HM (2003) Developmental regulation of growth plate. Nature 423:332–336

    Article  PubMed  CAS  Google Scholar 

  • McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analysis. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721

    PubMed  Google Scholar 

  • Murakami S, Kan M, McKeehan WL, Crombrugghe B (2000) Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the MAPK pathways. Proc Natl Acad Sci USA 97:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Papachristou DJ, Batistatou A, Sykiotis GP, Varakis I, Papavassiliou AG (2003) Activation of the JNK–AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone 32:364–371

    Article  PubMed  CAS  Google Scholar 

  • Peverali FA, Basdra EK, Papavassiliou AG (2001) Stretch-mediated activation of selective MAPK subtypes and potentiation of AP-1 binding in human osteoblastic cells. Mol Med 7:68–78

    PubMed  CAS  Google Scholar 

  • Pirttiniemi P, Kantomaa T (1998) Effect of cytochalasin D on articular cartilage cell phenotype and shape in long-term organ culture. Eur J Orthod 20:491–499

    Article  PubMed  CAS  Google Scholar 

  • Pirttiniemi P, Kantomaa T, Sorsa T (2004) Effect of decreased loading on the metabolic activity of the mandibular condylar cartilage in the rat. Eur J Orthod 26:1–5

    Article  PubMed  Google Scholar 

  • Rabie AB, Tang GH, Hagg U (2004) Cbfa1 couples chondrocytes maturation and endochondral ossification in rat mandibular condylar cartilage. Arch Oral Biol 49:109–118

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, Schulze-Tanzil G, de Souza P, John T, Rahmanzadeh M, Rahmanzadeh R, Merker HJ (2001) Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276:13289–13294

    Article  PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  PubMed  CAS  Google Scholar 

  • Smith R, Thomas K, Schurman D, Carter D, Wong M, van der Meulen M (1992) Rabbit knee immobilization: bone remodeling precedes cartilage degradation. J Orthop Res 10:88–95

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:467–481

    Article  PubMed  CAS  Google Scholar 

  • Tuominen M, Kantomaa T, Pirttiniemi P (1994) Effect of altered loading on condylar growth in rat. Acta Odontol Scand 52:129–134

    Article  PubMed  CAS  Google Scholar 

  • Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-Iwamoto M, Ohmori T, Enomoto H, Nakata K, Takada K, Kurisu K, Komori T (2001) Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 153:87–100

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  PubMed  CAS  Google Scholar 

  • Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ziros PG, Rojas-Gil A-P, Georgakopoulos T, Habeos I, Basdra EK, Papavassiliou AG (2002) The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 277:23934–23941

    Article  PubMed  CAS  Google Scholar 

  • Ziros PG, Georgakopoulos T, Habeos I, Basdra EK, Papavassiliou AG (2004) Growth hormone attenuates the transcriptional activity of Runx2 by facilitating its physical association with Stat3β. J Bone Miner Res 19:1892–1904

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthimia K. Basdra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papachristou, D.J., Pirttiniemi, P., Kantomaa, T. et al. JNK/ERK–AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation. Histochem Cell Biol 124, 215–223 (2005). https://doi.org/10.1007/s00418-005-0026-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0026-8

Keywords

Navigation