Skip to main content
Log in

Apoptotic signaling proteins: possible participation in the regulation of vasopressin and catecholamines biosynthesis in the hypothalamus

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The role of apoptotic signaling proteins for long-lived neurons in the mature brain is poorly understood. Recently, we have shown that water deprivation leads to the activation of vasopressin (VP) secretion and expression of Bcl-2 and caspase-9 apototic proteins in the hypothalamus of the rat brain. In the present work, we continued to study a possible relationship between the functional activity of neurosecretory cells of the hypothalamus and apoptosis related proteins. We found that water deprivation leads to simultaneous activation of synthesis of VP and p53 and Bcl-2 apoptotic proteins in the mouse brain. To study a possible effect of apoptotic proteins on the functional state of hypothalamic neurons, the VP and tyrosine hydroxylase (TH) synthesis were analyzed in p53, p21Waf1/Cip1 and Bcl-2 deficient mice. Loss of p53 and Bcl-2 significantly reduced VP synthesis in paraventricular and supraoptic nuclei and TH expression in arcuat, periventricular and zona incerta nuclei of the hypothalamus. Surprisingly, in contrast with the loss of p53, the inactivation of p21Waf1/Cip1 up-regulates the expression of VP and TH. These data indicate that p53, p21Waf1/Cip1 and Bcl-2 proteins, besides affecting cell cycle, tumor suppression and apoptosis, may act as modulators of neurosecretory activity of hypothalamic neurons; however, this problem remains to be determined more detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amson R, Lassalle JM, Halley H, Prieur S, Lethrosne F, Roperch JP, Israeli D, Gendron MC, Duyckaerts C, Checler F, Dausset J, Cohen D, Oren M, Telerman A (2000) Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc Natl Acad Sci USA 97:5346–5350

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5:931–936

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, Geffard M, Pool CW, Hoorneman EM (1984) The dopaminergic innervation of the supraoptic and paraventricular nucleus A light and electron microscopical study. Brain Res 323:65–72

    Article  PubMed  CAS  Google Scholar 

  • Craig RW (2002) MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16:444–454

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  • Fedorov LM, Papadopoulos T, Tyrsin OY, Twardzik T, Götz R, Rapp UR (2003) Loss of p53 in c-raf induced transgenic lung adenoma leads to tumor acceleration and phenotypic switch. Cancer Res 63:2268–2277

    PubMed  CAS  Google Scholar 

  • Fedorov LM, Tyrsin OY, Papadopoulos T, Camarero G, Götz R and Rapp UR (2002) Bcl-2 determines susceptibility to induction of lung cancer by oncogenic c-raf. Cancer Res 62:6297–6303

    PubMed  CAS  Google Scholar 

  • Fotedar R, Bendjennat M, Fotedar A (2004) Role of p21WAF1 in the cellular response to UV. Cell Cycle 3:134–137

    PubMed  CAS  Google Scholar 

  • Glasgow E, Kusana K, Chin H, Mezey E, Young WS III, Gainer H (1999) Single cell reverse transcription—polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 140:5391–401

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  • Holm K, Isacson O (1999) Factors intrinsic to the neuron can induce and maintain its ability to promote axonal outgrowth: a role for BCL2?. Trends Neurosci 22:269–273

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kamada S, Shimono A, Shinto Y, Tsujimura T, Takahashi T, Noda T, Kitamura Y, Kondoh H, Tsujimoto Y (1995) bcl-2 deficiency in mice leads to pleiotropic abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res 55:354–359

    PubMed  CAS  Google Scholar 

  • Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    Article  PubMed  CAS  Google Scholar 

  • Lane DP (1993) A death in the life of p53. Nature 362:786–787

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–31

    Article  PubMed  CAS  Google Scholar 

  • Merry DE, Veis DJ, Hickey WF, Korsmeyer SJ (1994) Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311

    PubMed  CAS  Google Scholar 

  • Michaelidis TM, Sendtner M, Cooper JD, Airaksinen MS, Holtmann B, Meyer M, Thoenen H (1996) Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 17:75–89

    Article  PubMed  CAS  Google Scholar 

  • Missero C, Di Cunto F, Kiyokawa H, Koff A, Dotto GP (1996) The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev 10:3065–3075

    Article  PubMed  CAS  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    PubMed  CAS  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  PubMed  CAS  Google Scholar 

  • Murphy AN, Fiskum G (1999) Bcl-2 and Ca(2+)-mediated mitochondrial dysfunction in neural cell death. Biochem Soc Symp 66:33–41

    PubMed  CAS  Google Scholar 

  • Nakayama K, Nakayama K, Negishi I, Kuida K, Sawa H, Loh DY (1994) Targeted Disruption of Bcl-2ß in Mice: Occurrence of Gray Hair, Polycystic Kidney Disease, and Lymphocytopenia. Proc Natl Acad Sci USA 91:3700–3704

    Article  PubMed  CAS  Google Scholar 

  • North S, Hainaut P (2000) p53 and cell-cycle control: a finger in every pie. Pathol Biol (Paris) 48:255–270

    CAS  Google Scholar 

  • Perez-Sanchez C, Budhram-Mahadeo VS, Latchman DS (2002) Distinct promoter elements mediate the co-operative effect of Brn-3a and p53 on the p21 promoter and their antagonism on the Bax promoter. Nucleic Acids Res 30:4872–4880

    Article  PubMed  CAS  Google Scholar 

  • Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175–180

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swatson LW (1982) The organization of noradrenergic pathways from the brain stem to the paraventricular and supraoptic nuclei in the rat. Brain Res 257:275–325

    PubMed  CAS  Google Scholar 

  • Schmidt-Kastner R, Truettner J, Zhao W, Belayev L, Krieger C, Busto R, Ginsberg MD (2000) Differential changes of bax, caspase-3 and p21 mRNA expression after transient focal brain ischemia in the rat. Mol Brain Res 79:88–101

    Article  PubMed  CAS  Google Scholar 

  • Smolen AJ (1990) Image analytic techniques for quantification of immunohistochemical staining in the nervous system. Methods Neurosci 3:208–229

    Google Scholar 

  • Shioda S, Nakai Y (1996) Direct projections form catecholaminergic neurons in the caudal ventrolateral medulla to vasopressin-containing neurons in the supraoptic nucleus: a triple-labeling electron microscope study in the rat. Neurosci Lett 221:45–48

    Article  PubMed  CAS  Google Scholar 

  • Taranukhin AG, Glazova MV, Evteeva SE,Yamova LA, Chernigovskaya EV (2002) Involvement of catecholamines and nitric oxide in the regulation of apoptosis in rat hypothalamic nonapeptidergic neurons. J Evol Biochem Physiol 38:781–786

    Article  CAS  Google Scholar 

  • Taranukhin AG, Chernigovskaya EV, Glazova MV, Evteeva SE, Yamova LA, Oganesyan GA (2003) The catecholamines regulation of apoptosis in rat hypothalamic nonapeptidergic neurons in vitro. J Evol Biochem Physiol 39:732–738

    Article  CAS  Google Scholar 

  • Tendler E, Weisinger G, Coleman R, Diamond E, Lischinsky S, Kerner H, Rotter, Zinder O (1999) Tissue-specific p53 expression in the nervous system. Mol Brain Res 72:40–46

    Article  PubMed  CAS  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240

    Article  PubMed  CAS  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187–5190

    PubMed  CAS  Google Scholar 

  • Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765

    PubMed  CAS  Google Scholar 

  • Yamova LA, Glazova MV, Yevteeva SE, Chernigovskaya EV (2003) Effect of block of catecholamine synthesis on the functional state of vasopressinergic neurons of hypothalamus in dehydrated rats. J Evol Biochem Physiol 39:369–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge P. Leder and M Sentner for p21Cip1/Waf1 and bcl-2 deficient mice, respectively. We also thank H. Gainer for the vasopressin expressing vector and S. Gambaryan for advices during in situ experiments. We are grateful to A. Kretz and S. Hollis for the critical reading of manuscript and stimulation of helpful discussion. The study was supported in part by Russian Foundation for Fundamental Research (Grants RFBR 01-04-48825 and RFBR 05-04-48099-a) and German Program Neue Bundesland (NBL-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena V. Chernigovskaya or Lev M. Fedorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernigovskaya, E.V., Taranukhin, A.G., Glazova, M.V. et al. Apoptotic signaling proteins: possible participation in the regulation of vasopressin and catecholamines biosynthesis in the hypothalamus. Histochem Cell Biol 124, 523–533 (2005). https://doi.org/10.1007/s00418-005-0016-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0016-x

Keywords

Navigation