Skip to main content
Log in

Characterisation of transverse slice culture preparations of postnatal rat spinal cord: preservation of defined neuronal populations

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Spinal cord injury induces degenerative and regenerative processes and complex interactions of neurons with non-neuronal cells. In order to develop an in vitro tool for the investigation of such processes, we prepared and characterised spinal cord slice cultures (SCSC) from Wistar rats (p0–12). SCSC were sustained in vitro up to 12 days and characterised by immunohistochemistry. Calbindin+ neurons, distributed across the entire gray matter, were visible also after longer culture periods. NeuN+ neurons were best preserved in the dorsal horn whereas large NeuN+ and choline acetyltransferase+ motoneurons in the ventral horn vanished after 3 days in vitro. Nestin immunoreactivity was found in animals of all age groups, either in cells interspersed in the ependymal lining around the central canal or in cells resembling protoplasmic astrocytes. Glial fibrillary acidic protein+ astrocytes, initially restricted to the white matter, invaded the gray matter of SCSC early during the culture period. Microglial cells, stained by Griffonia simplicifolia isolectin B4, were rapidly activated in the dorsal tract and in the gray matter but declined in number with time. SCSC derived from p0 or p3 animals showed a better preservation of the cytoarchitecture than cultures derived from older animals. In summary, SCSC undergo degenerative changes, but they contain defined neuronal populations, the cytoarchitecture is partially preserved and the glial reaction is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albuquerque C, Lee CJ, Jackson AC, MacDermott AB (1999) Subpopulations of GABAergic and non-GABAergic rat dorsal horn neurons express Ca2+-permeable AMPA receptors. Eur J Neurosci 11:2758–2766

    CAS  PubMed  Google Scholar 

  • Alvarez FJ, Dewey DE, McMillin P, Fyffe RE (1999) Distribution of cholinergic contacts on Renshaw cells in the rat spinal cord: a light microscopic study. J Physiol 515(Pt 3):787–797

    Article  CAS  PubMed  Google Scholar 

  • Antal M, Petko M, Polgar E, Heizmann CW, Storm-Mathisen J (1996) Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 73:509–518

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin M, Nouvelot A, MacKenzie ET, Petit E (1998) Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Exp Neurol 150:30–39

    Article  CAS  PubMed  Google Scholar 

  • Bracken MB (2002) Steroids for acute spinal cord injury. Cochrane Database Syst Rev CD001046

  • Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L (1998) Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151:77–88

    Article  CAS  PubMed  Google Scholar 

  • Carr PA, Alvarez FJ, Leman EA, Fyffe RE (1998) Calbindin D28k expression in immunohistochemically identified Renshaw cells. Neuroreport 9:2657–2661

    CAS  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin D-28k parvalbumin in the rat nervous system. Neuroscience 35:375–475

    CAS  PubMed  Google Scholar 

  • Chan YM, Wu W, Yip HK, So KF (2002) Development of the regenerative capacity of postnatal axotomized rat spinal motoneurons. Neuroreport 13:1071–1074

    Article  PubMed  Google Scholar 

  • D’Orlando C, Fellay B, Schwaller B, Salicio V, Bloc A, Gotzos V, Celio MR (2001) Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 909:145–158

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Article  CAS  PubMed  Google Scholar 

  • Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6:712–724

    CAS  PubMed  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    CAS  PubMed  Google Scholar 

  • Frisen J, Johansson CB, Torok C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131:453–464

    CAS  PubMed  Google Scholar 

  • Gähwiler BH (1984) Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia 40:235–243

    PubMed  Google Scholar 

  • Goodchild AK, Llewellyn-Smith IJ, Sun QJ, Chalmers J, Cunningham AM, Pilowsky PM (2000) Calbindin-immunoreactive neurons in the reticular formation of the rat brainstem: catecholamine content and spinal projections. J Comp Neurol 424:547–562

    CAS  PubMed  Google Scholar 

  • Greensmith L, Vrbova G (1996) Motoneurone survival: a functional approach. Trends Neurosci 19:450–455

    Article  CAS  PubMed  Google Scholar 

  • Grossman SD, Rosenberg LJ, Wrathall JR (2001) Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168:273–282

    Article  CAS  PubMed  Google Scholar 

  • Grossman SD, Wolfe BB, Yasuda RP, Wrathall JR (2000) Changes in NMDA receptor subunit expression in response to contusive spinal cord injury. J Neurochem 75:174–184

    Article  CAS  PubMed  Google Scholar 

  • Hadley SD, Goshgarian HG (1997) Altered immunoreactivity for glial fibrillary acidic protein in astrocytes within 1 h after cervical spinal cord injury. Exp Neurol 146:380–387

    Article  CAS  PubMed  Google Scholar 

  • Hailer NP, Grampp A, Nitsch R (1999) Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 11:3359–3364

    Article  CAS  PubMed  Google Scholar 

  • Iacopino A, Christakos S, German D, Sonsalla PK, Altar CA (1992) Calbindin-D28K-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Brain Res Mol Brain Res 13:251–261

    Article  CAS  PubMed  Google Scholar 

  • Jansen AS, Loewy AD (1997) Neurons lying in the white matter of the upper cervical spinal cord project to the intermediolateral cell column. Neuroscience 77:889–898

    Article  CAS  PubMed  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kalman M, Ajtai BM (2001) A comparison of intermediate filament markers for presumptive astroglia in the developing rat neocortex: immunostaining against nestin reveals more detail, than GFAP or vimentin. Int J Dev Neurosci 19:101–108

    Article  CAS  PubMed  Google Scholar 

  • Kullberg S, Aldskogius H, Ulfhake B (2001) Microglial activation, emergence of ED1-expressing cells and clusterin upregulation in the aging rat CNS, with special reference to the spinal cord. Brain Res 899:169–186

    Article  CAS  PubMed  Google Scholar 

  • Leme RJ, Chadi G (2001) Distant microglial and astroglial activation secondary to experimental spinal cord lesion. Arq Neuropsiquiatr 59:483–492

    CAS  PubMed  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li H, Kaneko T, Mizuno N (1999) Local circuit neurons showing calbindin D28k-immunoreactivity in the substantia gelatinosa of the medullary dorsal horn of the rat. An immunohistochemical study combined with intracellular staining in slice preparation. Brain Res 840:179–183

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Wu SX, Li JL, Kaneko T, Mizuno N (2000) Co-existence of calcium-binding proteins in neurons of the medullary dorsal horn of the rat. Neurosci Lett 286:103–106

    Article  CAS  PubMed  Google Scholar 

  • Lim SM, Guiloff RJ, Navarrete R (2000) Interneuronal survival and calbindin-D28k expression following motoneuron degeneration. J Neurol Sci 180:46–51

    CAS  PubMed  Google Scholar 

  • Liu K, Wang Z, Wang H, Zhang Y (2002) Nestin expression and proliferation of ependymal cells in adult rat spinal cord after injury. Chin Med J (Engl) 115:339–341

    Google Scholar 

  • Liu L, Rudin M, Kozlova EN (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131:64–73

    Article  CAS  PubMed  Google Scholar 

  • Magnusson A, Dahlfors G, Blomqvist A (1996) Differential distribution of calcium-binding proteins in the dorsal column nuclei of rats: a combined immunohistochemical and retrograde tract tracing study. Neuroscience 73:497–508

    CAS  PubMed  Google Scholar 

  • Manitt C, Colicos MA, Thompson KM, Rousselle E, Peterson AC, Kennedy TE (2001) Widespread expression of netrin-1 by neurons and oligodendrocytes in the adult mammalian spinal cord. J Neurosci 21:3911–3922

    CAS  PubMed  Google Scholar 

  • McMahon A, Wong BS, Iacopino AM, Ng MC, Chi S, German DC (1998) Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. Brain Res Mol Brain Res 54:56–63

    Article  CAS  PubMed  Google Scholar 

  • Morin-Richaud C, Feldblum S, Privat A (1998) Astrocytes and oligodendrocytes reactions after a total section of the rat spinal cord. Brain Res 783:85–101

    Article  CAS  PubMed  Google Scholar 

  • Nazli M, Morris R (2000) Comparison of localization of the neurokinin 1 receptor and nitric oxide synthase with calbindin D labelling in the rat spinal cord. Anat Histol Embryol 29:141–143

    CAS  PubMed  Google Scholar 

  • Notterpek LM, Bullock PN, Malek-Hedayat S, Fisher R, Rome LH (1993) Myelination in cerebellar slice cultures: development of a system amenable to biochemical analysis. J Neurosci Res 36:621–634

    CAS  PubMed  Google Scholar 

  • Oda Y (1999) Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 49(11):921–937

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AL, Risling M, Negro A, Langone F, Cullheim S (2002) Apoptosis of spinal interneurons induced by sciatic nerve axotomy in the neonatal rat is counteracted by nerve growth factor and ciliary neurotrophic factor. J Comp Neurol 447:381–393

    CAS  PubMed  Google Scholar 

  • Phelps PE, Barber RP, Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1984) Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: an immunocytochemical study. J Comp Neurol 229:347–361

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464

    Article  CAS  PubMed  Google Scholar 

  • Pozzo Miller LD, Mahanty NK, Connor JA, Landis DM (1994) Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Neuroscience 63:471–487

    Article  CAS  PubMed  Google Scholar 

  • Prewitt CM, Niesman IR, Kane CJ, Houle JD (1997) Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol 148:433–443

    Article  CAS  PubMed  Google Scholar 

  • Rabchevsky AG, Streit WJ (1997) Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47:34–48

    Article  CAS  PubMed  Google Scholar 

  • Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Brain Res Rev 19:163–179

    Article  CAS  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    CAS  PubMed  Google Scholar 

  • Rintoul GL, Raymond LA, Baimbridge KG (2001) Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells. Cell Calcium 29:277–287

    CAS  PubMed  Google Scholar 

  • Sahin KS, Mahmood A, Li Y, Yavuz E, Chopp M (1999) Expression of nestin after traumatic brain injury in rat brain. Brain Res 840:153–157

    Article  PubMed  Google Scholar 

  • Schmidt-Kastner R, Humpel C (2002) Nestin expression persists in astrocytes of organotypic slice cultures from rat cortex. Int J Dev Neurosci 20:29–38

    Article  CAS  PubMed  Google Scholar 

  • Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999) Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 11:3648–3658

    CAS  PubMed  Google Scholar 

  • Shibuya S, Miyamoto O, Auer R, Itano T, Mori S, Norimatsu H (2002) Embryonic intermediate filament, nestin, expression following traumatic spinal cord injury in adult rats. Neuroscience 114:905

    CAS  PubMed  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  CAS  PubMed  Google Scholar 

  • Tauer U, Volk B, Heimrich B (1996) Differentiation of Purkinje cells in cerebellar slice cultures: an immunocytochemical and Golgi EM study. Neuropathol Appl Neurobiol 22:361–369

    CAS  PubMed  Google Scholar 

  • Todd AJ, Spike RC, Polgar E (1998) A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 85:459–473

    Article  CAS  PubMed  Google Scholar 

  • Tzeng SF, Bresnahan JC, Beattie MS, de Vellis J (2001) Upregulation of the HLH Id gene family in neural progenitors and glial cells of the rat spinal cord following contusion injury. J Neurosci Res 66:1161–1172

    CAS  PubMed  Google Scholar 

  • Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS (2002) Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res Dev Brain Res 139:9–17

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Li Y, Liu H, Wu W (1995) Induction of nitric oxide synthase and motoneuron death in newborn and early postnatal rats following spinal root avulsion. Neurosci Lett 194:109–112

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 172:115–127

    CAS  PubMed  Google Scholar 

  • Yuan Q, Wu W, So KF, Cheung AL, Prevette DM, Oppenheim RW (2000) Effects of neurotrophic factors on motoneuron survival following axonal injury in newborn rats. Neuroreport 11:2237–2241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Stiftung Friedrichsheim. S.I.S. received a grant from the Deutsche Akademische Austauschdienst (DAAD). The authors wish to thank Mr. Chalid Ghadban for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils P. Hailer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavridis, S.I., Dehghani, F., Korf, HW. et al. Characterisation of transverse slice culture preparations of postnatal rat spinal cord: preservation of defined neuronal populations. Histochem Cell Biol 123, 377–392 (2005). https://doi.org/10.1007/s00418-004-0743-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0743-4

Keywords

Navigation