Skip to main content
Log in

Toward functional glycomics by localization of tissue lectins: immunohistochemical galectin fingerprinting during diethylstilbestrol-induced kidney tumorigenesis in male Syrian hamster

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The current study focused on galectins (-1, -3, -4, -7, and –8) and deliberately performed immunohistochemical fingerprinting to explore their complexity in a context of experimental renal carcinogenesis. The diethylstilbestrol (DES)-induced renal tumors in male Syrian hamster kidney (SHKT) represent a unique animal model for the study of estrogen-dependent renal malignancies. Kidney sections of DES-treated hamsters (3 days to 11 months of DES exposure) were analyzed by immunohistochemistry using a panel of non-crossreactive antibodies raised against galectins-1, -3, -4, -7, and -8. Levels of expression were quantitatively determined by using computer-assisted microscopy on immunostained tissue sections. Except for galectin-4, all above mentioned galectins were expressed in kidney tumors. Small clusters of galectin-1-positive, most likely preneoplastic cells at the corticomedullary junction were already evident 1 week after DES administration. Galectin-1 and -3 expression was apparently associated with the first steps of the neoplastic transformation, because small tumorous buds were found to be positive after 1 month of treatment. In contrast, galectins-7 and -8 were detected in large tumors and medium-sized tumors, respectively, thereby indicating an involvement in later stages of DES-induced SHKT. Galectins-1, -3, -7, and -8 were also detected by immunofluorescence staining in the HKT-1097 cell line established from SHKT, thus illustrating the stability of galectin expression in tumor cells. Our data document the presence and differential regulation of galectins in the course of renal tumorigenesis in the model of DES-induced SHKT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–H
Fig. 2A–F
Fig. 3A–F

Similar content being viewed by others

References

  • Agrwal N, Wang JL, Voss PG (1989) Carbohydrate-binding protein 35. Levels of transcription and mRNA accumulation in quiescent and proliferating cells. J Biol Chem 264:17236–17242

    CAS  PubMed  Google Scholar 

  • Ahmad N, Gabius HJ, André S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer CF (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279:10841–10847

    CAS  PubMed  Google Scholar 

  • André S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius HJ (1999) Galectins-1 and -3 and their ligands in tumor biology. J Cancer Res Clin Oncol 125:461–474

    PubMed  Google Scholar 

  • André S, Pieters RJ, Vrasidas I, Kaltner H, Kuwabara I, Liu FT, Liskamp RMJ, Gabius HJ (2001) Wedgelike glycodendrimers as inhibitors of binding of mammalian galectins to glycoproteins, lactose maxiclusters, and cell surface glycoconjugates. ChemBioChem 2:822–830

    PubMed  Google Scholar 

  • André S, Liu B, Gabius HJ, Roy R (2003) First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside. Org Biomol Chem 1:3909–3916

    PubMed  Google Scholar 

  • André S, Unverzagt C, Kojima S, Frank M, Seifert J, Fink C, Kayser K, von der Lieth CW, Gabius HJ (2004a) Determination of modulation of ligand properties of synthetic complex-type biantennary N-glycans by introduction of bisecting GlcNAc in silico, in vitro and in vivo. Eur J Biochem 271:118–134

    PubMed  Google Scholar 

  • Andre S, Kaltner H, Furuike T, Nishimura S, Gabius HJ (2004b) Persubstituted cyclodextrin-based glycoclusters as inhibitors of protein-carbohydrate recognition using purified plant and mammalian lectins and wild-type and lectin-gene-transfected tumor cells as targets. Bioconjug Chem 15:87–98

    CAS  PubMed  Google Scholar 

  • Bhat HK, Hacker HJ, Bannasch P, Thompson EA, Liehr JG (1993) Localization of estrogen receptors in interstitial cells of hamster kidney and in estradiol-induced renal tumors as evidence of the mesenchymal origin of this neoplasm. Cancer Res 53:5447–5451

    CAS  PubMed  Google Scholar 

  • Bresalier RS, Yan PS, Byrd JC, Lotan R, Raz A (1997) Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer 80:776–787

    CAS  PubMed  Google Scholar 

  • Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12:616–623

    Google Scholar 

  • Brockhausen I, Schutzbach J, Kuhns W (1998) Glycoproteins and their relationship to human disease. Acta Anat (Basel) 161:36–78

    Google Scholar 

  • Brohée R, Nonclercq D, Journé DN, Toubeau G, Falmagne P, Leclercq G, Heuson-Stiennon JA, Laurent G (2000) Demonstration of estrogen receptors and of estrogen responsiveness in the HKT-1097 cell line derived from diethylstilbestrol-induced kidney tumors. In Vitro Cell Dev Biol Anim 36:640–649

    PubMed  Google Scholar 

  • Bullock SL, Johnson TM, Bao Q, Hughes RC, Winyard PJ, Woolf AS (2001) Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol 12:515–523

    Google Scholar 

  • Burger A, Filsinger S, Cooper DNW, Hansch GM (1996) Expression of the 14 kDa galactose binding protein, galectin-1 on human tubular epithelial cells. Kidney Int 50:754–759

    CAS  PubMed  Google Scholar 

  • Camby I, Belot N, Rorive S, Lefranc F, Maurage CA, Lahm H, et al (2001) Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol 11:12–26

    CAS  PubMed  Google Scholar 

  • Caselitz J (1987) Lectins and blood group substances as “tumor markers”. Curr Top Pathol 77:245–277

    CAS  PubMed  Google Scholar 

  • Castronovo V, Liu FT, van den Brûle FA (1996) Decreased expression of galectin-3 in basal cell carcinoma of the skin. Int J Oncol 15:67–70

    Google Scholar 

  • Choe YS, Shim C, Choi D, Sang Lee C, Lee KK, Kim K (1997) Expression of galectin-1 mRNA in the mouse uterus is under the control of ovarian steroids during blastocyst implantation. Mol Reprod Dev 48:261–266

    CAS  PubMed  Google Scholar 

  • Cooper DN (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    CAS  PubMed  Google Scholar 

  • Cortes-Vizcaino V, Peydro-Olaya A, Llombart-Bosch A (1994) Morphological and immunohistochemical support for the interstitial cell origin of oestrogen-induced kidney tumors in the Syrian golden hamster. Carcinogenesis 15:2155–2162

    CAS  PubMed  Google Scholar 

  • Dagher SF, Wang JL, Patterson RJ (1995) Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A 92:1213–1217

    CAS  PubMed  Google Scholar 

  • Do Thi A, Jung-Testas I, Baulieu EE (1998) Neuronal signals are required for estrogen-mediated induction of progesterone receptor in cultured rat Schwann cells. J Steroid Biochem Mol Biol 67:201–211

    PubMed  Google Scholar 

  • Dodge AH, Brownfield M, Reid IA, Inagami T (1988) Immunohistochemical renin study of DES-induced renal tumor in the Syrian hamster. Am J Anat 182:347–352

    CAS  PubMed  Google Scholar 

  • Ekblom P, Nordling S, Saxen L, Rasilo ML, Renkonen O (1979) Cell interactions leading to kidney tubule determination are tunicamycin sensitive. Cell Differ 8:347–355

    CAS  PubMed  Google Scholar 

  • Foddy L, Stamatoglou SC, Hughes RC (1990) An endogenous carbohydrate-binding protein of baby hamster kidney (BHK21 C13) cells. Temporal changes in cellular expression in the developing kidney. J Cell Sci 97:139–148

    CAS  PubMed  Google Scholar 

  • Francois C, van Velthoven R, De Lathouwer O, Moreno C, Peltier A, Kaltner H, Salmon I, Gabius HJ, Danguy A, Decaestecker C, Kiss R (1999) Galectin-1 and galectin-3 binding pattern expression in renal cell carcinomas. Am J Clin Pathol 112:194–203

    CAS  PubMed  Google Scholar 

  • Gabius HJ (1988) Tumor lectinology: at the intersection of carbohydrate chemistry, biochemistry, cell biology and oncology. Angew Chem Int Ed Engl 27:1267–1276

    Article  Google Scholar 

  • Gabius HJ (1989) Potential participation of tumor lectins in cancer diagnosis, therapy and biology. Adv Lectin Res Z:87–106

    Google Scholar 

  • Gabius HJ (1990) Influence of type of linkage and spacer on the interaction of beta-galactoside-binding proteins with immobilized affinity ligands. Anal Biochem 189:91–94

    CAS  PubMed  Google Scholar 

  • Gabius HJ (1997a) Concepts of tumor lectinology. Cancer Invest 15:454–464

    CAS  PubMed  Google Scholar 

  • Gabius HJ (1997b) Animal lectins. Eur J Biochem 243:543–576

    CAS  PubMed  Google Scholar 

  • Gabius HJ (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121

    Article  CAS  PubMed  Google Scholar 

  • Gabius HJ (2001) Glycohistochemistry: the why and how of detection and localization of endogenous lectins. Anat Histol Embryol 30:3–31

    Google Scholar 

  • Gabius HJ, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 95:269–277

    CAS  PubMed  Google Scholar 

  • Gabius HJ, André S, Kaltner H, Siebert HC (2002) The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177

    CAS  PubMed  Google Scholar 

  • Gabius HJ, Siebert HC, André S, Jiménez-Barbero J, Rüdiger H (2004) Chemical biology of the sugar code. ChemBioChem 5:740–764

    CAS  PubMed  Google Scholar 

  • Gillenwater A, Xu XC, el-Naggar AK, Clayman GL, Lotan R (1996) Expression of galectins in head and neck squamous cell carcinoma. Head Neck18:422–432

    Google Scholar 

  • Goldfarb S, Pugh TD (1990) Morphology and anatomic localization of renal microneoplasms and proximal tubule dysplasia induced by four different estrogens in the hamster. Cancer Res 50:113–119

    CAS  PubMed  Google Scholar 

  • Gonzalez A, Oberley TD, Li JJ (1989) Morphological and immunohistochemical studies of the estrogen-induced Syrian hamster renal tumor: probable cell of origin. Cancer Res 49:1020–1028

    CAS  PubMed  Google Scholar 

  • Hacker HJ, Bannasch P, Liehr J (1988) Histochemical analysis of the development of estradiol-induced kidney tumors in male Syrian hamsters. Cancer Res 48:971–976

    CAS  PubMed  Google Scholar 

  • He L, Andre S, Siebert HC, Helmholz H, Niemeyer B, Gabius HJ (2003) Detection of ligand- and solvent-induced shape alterations of cell-growth-regulatory human lectin galectin-1 in solution by small angle neutron and X-ray scattering. Biophys J 85:511–524

    CAS  PubMed  Google Scholar 

  • Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q (2000) Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J Cell Biol 151:1235–1246

    CAS  PubMed  Google Scholar 

  • Hittelet A, Camby I, Nagy N, Legendre H, Bronckart Y, Decaestecker C, Kaltner H, Nifant’ev NE, Bovin NV, Pector JC, Salmon I, Gabius HJ, Yeaton P (2003) Binding sites for Lewis antigens are expressed by human colon cancer cells and negatively affect their migration. Lab Invest 83:777–787

    CAS  PubMed  Google Scholar 

  • Holthofer H (1988) Cell type-specific glycoconjugates of collecting duct cells during maturation of the rat kidney. Cell Tissue Res 253:305–309

    CAS  PubMed  Google Scholar 

  • Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaba Y, Yoshida J, Hattori K, Tomiyama Y, Raz A, Kubo T (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6:4635–4640

    CAS  PubMed  Google Scholar 

  • Horning ES, Wittick JW (1954) The histogenesis of stilboestrol-induced renal tumors in the male golden hamster. Br J Cancer 8:541–547

    Google Scholar 

  • Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY, Liu FT (1999) Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer 81:519–526

    CAS  PubMed  Google Scholar 

  • Inohara H, Honjo Y, Yoshii T, Akahani S, Yoshida J, Hattori K, Okamoto S, Sawada T, Raz A, Kubo T (1999) Expression of galectin-3 in fine-needle aspirates as a diagnostic marker differentiating benign from malignant thyroid neoplasms. Cancer 85:2475–2484

    CAS  PubMed  Google Scholar 

  • Jung-Testas I, Schumacher M, Robel P, Baulieu EE (1994) Actions of steroid hormones and growth factors on glial cells of the central and peripheral nervous system. J Steroid Biochem Mol Biol 48:145–154

    CAS  PubMed  Google Scholar 

  • Kaltner H, Stierstorfer B (1998) Animal lectins as cell adhesion molecules. Acta Anat (Basel) 161:162–179

    Google Scholar 

  • Kaltner H, Seyrek K, Heck A, Sinowatz F, Gabius HJ (2002) Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res 307:35–46

    CAS  PubMed  Google Scholar 

  • Kirkman H, Bacon RL (1950) Malignant renal tumors in male hamsters (Cricetus auratus) treated with estrogen. Cancer Res 10:122–124

    CAS  Google Scholar 

  • Kopitz J, von Reitzenstein C, Andre S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius HJ (2001) Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276:35917–35923

    CAS  PubMed  Google Scholar 

  • Kopitz J, Andre S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu FT, Cantz M, Heck AJ, Gabius HJ (2003) Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 22:6277–6288

    CAS  PubMed  Google Scholar 

  • Kriz W, Bankir L (1988) A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Kidney Int 33:1–7

    Google Scholar 

  • Lahm H, André S, Hoeflich A, Kaltner H, Siebert HC, Sordat B, von der Lieth CW, Wolf E, Gabius HJ (2004) Tumor galectinology: insights into the complex network of a family of endogenous lectins. Glycoconj J 20:227–238

    CAS  PubMed  Google Scholar 

  • Laitiner L, Virtanen I, Saxen L (1987) Changes in the glycosylation pattern during embryonic development of mouse kidney as revealed with lectin conjugates. J Histochem Cytochem 35:55–65

    PubMed  Google Scholar 

  • Laurent G, Nonclercq D, Journé F, Brohée R, Toubeau G, Falmagne P, Heuson-Stiennon JA (1999) Characterization of a cell line established from diethylstilbestrol-induced renal tumors in Syrian hamsters. In Vitro Cell Dev Biol Anim 35:339–344

    CAS  PubMed  Google Scholar 

  • Li JJ, Li SA (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. Arch Toxicol 55:110–118

    CAS  PubMed  Google Scholar 

  • Li JJ, Li SA (1990) Estrogen carcinogenesis in hamster tissues: a critical review. Endocr Rev 11:524–531

    CAS  PubMed  Google Scholar 

  • Li JJ, Weroha SJ, Davis MF, Tawfik O, Hou X, Li SA (2001) ER and PR in renomedullary interstitial cells during Syrian hamster estrogen-induced tumorigenesis: evidence for receptor-mediated oncogenesis. Endocrinology 142:4006–4014

    CAS  PubMed  Google Scholar 

  • Liehr JG (1997) Hormone-associated cancer: mechanistic similarities between human breast cancer and estrogen-induced kidney carcinogenesis in hamsters. Environ Health Perspect 105:565–569

    PubMed  Google Scholar 

  • Liehr JG (2001) Genotoxicity of the steroidal oestrogens oestrone and oestradiol: possible mechanism of uterine and mammary cancer development. Hum Reprod Update 7:273–281

    CAS  PubMed  Google Scholar 

  • Liehr JG, Fang WF, Sirbasku DA, Ari-Ulubelen A (1986) Carcinogenicity of catechol estrogens in Syrian hamsters. J Steroid Biochem 24:353–356

    CAS  PubMed  Google Scholar 

  • Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273

    CAS  PubMed  Google Scholar 

  • Llombart-Bosch A, Peydro A (1975) Morphological, histochemical and ultrastructural observations of diethylstilbestrol-induced kidney tumors in the Syrian golden hamster. Eur J Cancer 11:403–412

    CAS  PubMed  Google Scholar 

  • Lotan R, Belloni PN, Tressler RJ, Lotan D, Xu XC, Nicolson GL (1994) Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj J 11:462–468

    CAS  PubMed  Google Scholar 

  • Lu J, Pei H, Kaeck M, Thompson HJ (1997) Gene expression changes associated with chemically induced rat mammary carcinogenesis. Mol Carcinog 20:204–215

    CAS  PubMed  Google Scholar 

  • Magnaldo T, Bernerd F, Darmon M (1995) Galectin-7, a human 14-kDa S-lectin, specifically expressed in keratinocytes and sensitive to retinoic acid. Dev Biol 168:259–271

    Article  CAS  PubMed  Google Scholar 

  • Matarrese P, Tinari N, Semeraro ML, Natoli C, Iacobelli S, Malorni W (2000) Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett 473:311–315

    CAS  PubMed  Google Scholar 

  • Morris S, Ahmad N, Andre S, Kaltner H, Gabius HJ, Brenowitz M, Brewer F (2004) Quaternary solution structures of galectins-1, -3, and -7. Glycobiology 14:293–300

    CAS  PubMed  Google Scholar 

  • Moutsatsos IK, Wade M, Schindler M, Wang JL (1987) Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci U S A 84:6452–6456

    CAS  PubMed  Google Scholar 

  • Nagy N, Bronckart Y, Camby I, Legendre H, Phillipart P, Lahm H, et al (2002) Galectin-8 expression decreases in cancer as compared to normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration. Gut 50:392–401

    CAS  PubMed  Google Scholar 

  • Nagy N, Legendre H, Engels O, Andre S, Kaltner H, Wasano K, Zick Y, Pector JC, Decaestecker C, Gabius HJ, Salmon I, Kiss R (2003) Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting. Cancer 97:1849–1858

    PubMed  Google Scholar 

  • Nishiyama J, Kobayashi S, Ishida A, Nakabayashi I, Tajima O, Miura S, Katayama M, Nogami H (2000) Up-regulation of galectin-3 in acute renal failure of the rat. Am J Pathol 157:815–823

    CAS  PubMed  Google Scholar 

  • Nogueira E, Gardesa A, Mohr U (1993) Experimental models of kidney tumors. J Cancer Res Clin Oncol 119:190–198

    CAS  PubMed  Google Scholar 

  • Nonclercq D, Toubeau G, Wattiez R, Laurent G, Bernard A, Journe F, Falmagne P, Heuson-Stiennon JA (1998) Sublethal alterations and sustained cell proliferation associated with diethylstilbestrol-induced renal carcinogenesis in male Syrian golden hamsters. Eur J Morphol 36:83–96

    CAS  PubMed  Google Scholar 

  • Nonclercq D, Lienard V, Zanen J, Laurent G, Toubeau G (2002) Phenotypic variation and dynamic topography of transformed cells in an experimental model of diethylstilbestrol-induced renal tumor in male Syrian hamster. Histochem J 34:487–497

    PubMed  Google Scholar 

  • Nonclercq D, Journé F, Body JJ, Leclercq G, Laurent G (2004) Ligand-independent and agonist-mediated degradation of estrogen receptor α in breast carcinoma cells: evidence for distinct degradative pathways. Mol Cell Endocrinol 227:53–65

    Article  Google Scholar 

  • Oberley TD, Gonzalez A, Lauchner LJ, Oberley LW, Li JJ (1991) Characterization of early kidney lesions in estrogen-induced tumors in the Syrian hamster. Cancer Res 51:1922–1929

    CAS  PubMed  Google Scholar 

  • Rabinovich GA, Rubinstein N, Toscano MA (2002) Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta 1572:274–284

    CAS  PubMed  Google Scholar 

  • Rappl G, Abken H, Muche JM, Sterry W, Tilgen W, Andre S, Kaltner H, Ugurel S, Gabius HJ, Reinhold U (2002) CD4+CD7− leukemic T cells from patients with Sezary syndrome are protected from galectin-1-triggered T cell death. Leukemia 16:840–845

    CAS  PubMed  Google Scholar 

  • Reuter G, Gabius HJ (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 55:368–422

    CAS  PubMed  Google Scholar 

  • Rorive S, Eddafali B, Fernandez S, Decaestecker C, Andre S, Kaltner H, Kuwabara I, Liu FT, Gabius HJ, Kiss R, Salmon I (2002) Changes in galectin-7 and cytokeratin-19 expression during the progression of malignancy in thyroid tumors: diagnostic and biological implications. Mod Pathol 15:1294–1301

    PubMed  Google Scholar 

  • Rotblat B, Niv H, Andre S, Kaltner H, Gabius HJ, Kloog Y (2004) Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res 64:3112–3118

    CAS  PubMed  Google Scholar 

  • Rüdiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    PubMed  Google Scholar 

  • Rüdiger H, Siebert HC, Solis D, Jimenez-Barbero J, Romero A, von der Lieth CW, Diaz-Marino T, Gabius HJ (2000) Medicinal chemistry based on the sugar code: fundamentals of lectinology and experimental strategies with lectins as targets. Curr Med Chem 7:389–416

    PubMed  Google Scholar 

  • Sanjuan X, Fernandez PL, Castells A, Castronovo V, van den Brule F, Liu FT, Cardesa A, Campo E (1997) Differential expression of galectin-3 and galectin-1 in colorectal cancer progression. Gastroenterology 113:1906–1915

    CAS  PubMed  Google Scholar 

  • Siebert HC, Andre S, Lu SY, Frank M, Kaltner H, van Kuik JA, Korchagina EY, Bovin N, Tajkhorshid E, Kaptein R, Vliegenthart JF, von der Lieth CW, Jimenez-Barbero J, Kopitz J, Gabius HJ (2003) Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry 42:14762–14773

    CAS  PubMed  Google Scholar 

  • Takenaka Y, Fukumori T, Yoshii T, Oka N, Inohara H, Choi Kim HR, Bresalier RS, Raz A (2004) Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol 24:4395–4406

    CAS  PubMed  Google Scholar 

  • Toubeau G, Nonclercq D, Laurent G, Brohee R, Zanen J, Van Cauwenberge A, Alexandre H, Falmagne P, Heuson-Stiennon JA (2001) Immunohistochemical analysis of diethylstilbestrol induced renal tumors in adult male Syrian hamsters: evidence for relationship to peripheral nerve sheath tumors. Histochem Cell Biol 115:429–438

    CAS  PubMed  Google Scholar 

  • van den Brule FA, Berchuck A, Bast RC, Liu FT, Gillet C, Sobel ME, Castronovo V (1994) Differential expression of the 67-kD laminin receptor and 31-kD human laminin-binding protein in human ovarian carcinomas. Eur J Cancer 30A:1096–1099

    PubMed  Google Scholar 

  • van den Brule FA, Buicu C, Berchuck A, Bast RC, Deprez M, Liu FT, Cooper DN, Pieters C, Sobel ME, Castronovo V (1996) Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol 27:1185–1189

    PubMed  Google Scholar 

  • van den Brule FA, Waltregny D, Castronovo V (2001) Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol 193:80–87

    PubMed  Google Scholar 

  • van den Brule F, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo V (2003) Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest 83:377–386

    PubMed  Google Scholar 

  • Villalobo A, Gabius H (1998) Signaling pathways for transduction of the initial message of the glycocode into cellular responses. Acta Anat (Basel) 161:110–129

    Google Scholar 

  • Vrasidas I, Andre S, Valentini P, Bock C, Lensch M, Kaltner H, Liskamp RM, Gabius HJ, Pieters RJ (2003) Rigidified multivalent lactose molecules and their interactions with mammalian galectins: a route to selective inhibitors. Org Biomol Chem 1:803–810

    CAS  PubMed  Google Scholar 

  • Wang L, Inohara H, Pienta KJ, Raz A (1995) Galectin-3 is a nuclear matrix protein which binds RNA. Biochem Biophys Res Commun 217:292–303

    CAS  PubMed  Google Scholar 

  • Wattiez R, Nonclercq D, Journe F, Toubeau G, Zanen J, Falmagne P, Heuson-Stiennon JA (1996) Involvement of transforming growth factor alpha and its receptor in a model of DES-induced renal carcinogenesis in the Syrian hamster. Carcinogenesis 17:1615–1622

    CAS  PubMed  Google Scholar 

  • Winyard PJ, Bao Q, Hughes RC, Woolf AS (1997) Epithelial galectin-3 during human nephrogenesis and childhood cystic diseases. J Am Soc Nephrol 8:1647–1657

    CAS  PubMed  Google Scholar 

  • Xu XC, el-Naggar AK, Lotan R (1995) Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol 147:815–822

    CAS  PubMed  Google Scholar 

  • Yager JD, Liehr JG (1996) Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 36:203–232

    Article  CAS  PubMed  Google Scholar 

  • Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93:6737–6742

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R. Kiss and G. Laurent are Research Director and Senior Research Associate, respectively, of the National Fund for Scientific Research (Belgium). G. Laurent is the recipient of a grant (number 3.4512.03) from the Belgian Fund for Medical Scientific Research. The expert technical assistance of G. Ninfa is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Saussez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saussez, S., Nonclercq, D., Laurent, G. et al. Toward functional glycomics by localization of tissue lectins: immunohistochemical galectin fingerprinting during diethylstilbestrol-induced kidney tumorigenesis in male Syrian hamster. Histochem Cell Biol 123, 29–41 (2005). https://doi.org/10.1007/s00418-004-0733-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0733-6

Keywords

Navigation