Skip to main content
Log in

Regulation of the NADPH-oxidase complex of phagocytic leukocytes. Recent insights from structural biology, molecular genetics, and microscopy

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The NADPH-oxidase complex is a multisubunit enzyme complex that catalyzes the formation of superoxide (O2) by phagocytic leukocytes. This paper reviews some of the major advances in understanding the assembly and regulation of this enzyme system that have occurred during the past decade. For example, novel domains/motifs have been identified in p47-phox (PX and super SH3 domains) and p67-phox (tetratricopeptide repeat motifs). X-ray crystallography and NMR spectroscopy have provided detailed structural data on these domains and how p47-phox and p67-phox interact with p22-phox and activated Rac, respectively. Site-directed mutagenesis and knockout experiments have identified the critical phosphorylation sites in p47-phox, revealed an “activation domain” in p67-phox, and demonstrated that a specific pathway exists for activating Rac to participate in oxidase assembly/activation. Cytochemistry and immunofluorescence microscopy have provided new insights into the assembly of the oxidase and reveal a level of complexity not previously appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3A–C
Fig. 4
Fig. 5A–H
Fig. 6A–F

Similar content being viewed by others

References

  • Abo A, Webb MR, Grogan A, Segal AW (1994) Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J 298:585–591

    CAS  PubMed  Google Scholar 

  • Ago T, Nunoi H, Ito T, Sumimoto H (1999) Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47-phox. Triple replacement of serines 303, 304, and 328 with aspartate disrupts the SH3 domain-mediated intramolecular interaction in p47-phox, thereby activating the oxidase. J Biol Chem 274:33644–33653

    Article  CAS  PubMed  Google Scholar 

  • Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H (2003) Phosphorylation of p47-phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A 100:4474–4479

    Article  CAS  PubMed  Google Scholar 

  • Allen L-AH, DeLeo FR, Gallois A, Toyoshima S, Suzuki K, Nauseef WM (1999) Transient association of nicotinamide adenine dinucleotide phosphate oxidase subunits p47 phox and p67 phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease. Blood 93:3521–3530

    CAS  PubMed  Google Scholar 

  • Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen species generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 99:715–720

    Article  CAS  PubMed  Google Scholar 

  • Badwey JA, Robinson JM (1991) Biochemical and cytochemical studies on enzymes that dephosphorylate inositol (1,4,5)-trisphosphate in neutrophils. Histochem Cytochem 39:321–329

    CAS  Google Scholar 

  • Badwey JA, Curnutte JT, Robinson JM, Lazdins JK, Briggs RT, Karnovsky MJ, Karnovsky ML (1980) Comparative aspects of the oxidative metabolism of neutrophils from human blood and guinea pig peritonea: magnitude of the respiratory burst, dependence upon stimulatory agents, and localization of the oxidases. J Cell Physiol 105:541–551

    CAS  PubMed  Google Scholar 

  • Badwey JA, Curnutte JT, Karnovsky ML (1981) cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils. J Biol Chem 256:12640–12643

    CAS  PubMed  Google Scholar 

  • Badwey JA, Curnutte JT, Robinson JM, Berde CB, Karnovsky MJ, Karnovsky ML (1984) Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils. Reversibility by albumin. J Biol Chem 259:7870–7877

    CAS  PubMed  Google Scholar 

  • Badwey JA, Robinson JM, Horn W, Soberman RJ, Karnovsky MJ, Karnovsky ML (1988) Synergistic stimulation of neutrophils. Possible involvement of 5-hydroxy-6,8,11,14-eicosatetraenoate in superoxide release. J Biol Chem 263:2779–2786

    CAS  PubMed  Google Scholar 

  • Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9:364–370

    Article  CAS  PubMed  Google Scholar 

  • Barry-Lane PA, Patterson C, van der Merwe M, Hu Z, Holland SM, Yeh ET, Runge MS (2001) p47-Phox is required for atherosclerotic lesion progression in ApoE (−/−) mice. J Clin Invest 108:1513–1522

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BS (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    CAS  PubMed  Google Scholar 

  • Bernard V, Bohl BP, Bokoch GM (1999) Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274:13198–13204

    Article  PubMed  Google Scholar 

  • Berthier S, Paclet M-H, Lerouge S, Roux F, Vergnaud S, Coleman AW, Morel F (2003) Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation. MRP8/MRP14 regulation. J Biol Chem 278:25499–25508

    Article  CAS  PubMed  Google Scholar 

  • Borregaard N, Heiple JM, Simmons ER, Clark RA (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97:51–62

    Article  Google Scholar 

  • Briggs RT, Drath DB, Karnovsky ML, Karnovsky MJ (1975) Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J Cell Biol 67:566–586

    Article  CAS  PubMed  Google Scholar 

  • Brown GE, Stewart MQ, Liu H, Ha V-L, Yaffee MB (2003) A novel assay system implicates PtdIns(3,4)P2, Ptd Ins(3)P and PKCδ in intracellular production of reactive oxygen species by the NADPH oxidase. Mol Cell 11:35–47

    Article  CAS  PubMed  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    Google Scholar 

  • Corey EJ, Mehrotra MM, Khan AU (1987) Antiarthritic gold compounds effectively quench electronically excited singlet oxygen. Science 236:68–69

    CAS  PubMed  Google Scholar 

  • Curnutte JT, Erickson RW, Ding J, Badwey JA (1994) Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester. J Biol Chem 269:10813–10819

    Google Scholar 

  • Dana R, Malech HL, Levy R (1994) The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem J 297:217–223

    CAS  PubMed  Google Scholar 

  • Dana R, Leto TL, Malech HL, Levy R (1998) Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J Biol Chem 273:441–445

    Google Scholar 

  • DeLeo FR, Allen L-AH, Apicella M, Nauseef WM (1999) NADPH oxidase activation and assembly during phagocytosis. J Immunol 163:6732–6740

    CAS  PubMed  Google Scholar 

  • Dib K, Melander F, Axelsson L, Dagher MC, Aspenstrom P, Andersson T (2003) Down-regulation of Rac activity during beta 2 integrin-mediated adhesion of human neutrophils. J Biol Chem 278:24181–24188

    Google Scholar 

  • Diebold BA, Bokoch GM (2001) Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2:211–215

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Badwey JA (1992) Effects of antagonists of protein phosphatases on superoxide release by neutrophils. J Biol Chem 267:6442–6448

    Google Scholar 

  • Ding J, Badwey JA (1993) Stimulation of neutrophils with a chemoattractant activates several novel protein kinases that can catalyze the phosphorylation of peptides derived from p47-phox and MARCKS. J Biol Chem 268:17326–17333

    Google Scholar 

  • Ding J, Knaus UG, Lian JP, Bokoch GM, Badwey JA (1996) The renaturable 69 and 63 kDa protein kinases that undergo rapid activation in chemoattractant-stimulated guinea pig neutrophils are p21-activated kinases (Paks). J Biol Chem 271:24869–24873

    Google Scholar 

  • El Benna J, Faust LP, Babior BM (1994) The phosphorylation of the respiratory burst oxidase component p47-phox during neutrophil activation. J Biol Chem 269:23431–23436

    Google Scholar 

  • Fehr J, Moser R, Leppert D, Groscurth P (1985) Antiadhesive properties of biological surfaces are protective against stimulated granulocytes. J Clin Invest 76:535–542

    Google Scholar 

  • Fontayne A, Dang PM-C, Gougerot-Pocidalo M-A, El Benna J (2002) Phosphorylation of p47-phox by PKCα, βII, δ, γ and ζ: effect of binding to p22-phox and on NADPH oxidase activation. Biochemistry 41:7743–7750

    Article  CAS  PubMed  Google Scholar 

  • Foubert TR, Burritt JB, Taylor RM, Jesaitis AJ (2002) Structural changes are induced in human neutrophil cytochrome b by NADPH oxidase activators, LDS, SDS, and arachidonate: intermolecular resonance energy transfer between trisulfopyrenyl-wheat germ agglutinin and cytochrome b558. Biochim Biophys Acta 1567:221–231

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Lambeth JD (1996) NADPH oxidase activity is independent of p47-phox in vitro. J Biol Chem 271:22578–22582

    Google Scholar 

  • Gardiner EM, Pestonjamasp KN, Bohl BP, Chamberlain C, Hahn KM, Bokoch GM (2002) Spatial and temporal analysis of Rac activation during live neutrophil chemotaxis. Curr Biol 12:2029–2034

    Article  CAS  PubMed  Google Scholar 

  • Grizot S, Fieschi F, Dagher M-C, Pebay-Peyroula E (2001) The active N-terminal region of p67phox. Structure at 1.8 Å resolution and biochemical characterization of the A128 V mutant implicated in chronic granulomatous disease. J Biol Chem 276:21627–21631

    Article  CAS  PubMed  Google Scholar 

  • Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  CAS  PubMed  Google Scholar 

  • Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    CAS  PubMed  Google Scholar 

  • Han C-H, Freeman JLR, Lee T, Motalebi SA, Lambeth JD (1998) Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67-phox. J Biol Chem 273:16663–16668

    Article  CAS  PubMed  Google Scholar 

  • Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    Google Scholar 

  • Heyworth PG, Badwey JA (1990) Protein phosphorylation associated with the stimulation of neutrophils. Modulation of superoxide production by protein kinase C and calcium. J Bioenerg Biomembr 22:1–26

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991) Neutrophil NADPH oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Knaus UG, Settleman J, Curnutte JT, Bokoch GM (1993) Regulation of NADPH oxidase activity by Rac GTPase activating protein(s). Mol Biol Cell 4:1217–1223

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Robinson JM, Ding J, Ellis BA, Badwey JA (1997) Cofilin undergoes rapid dephosphorylation in stimulated neutrophils and translocates to ruffled membranes enriched in products of the NADPH oxidase complex. Evidence for a novel cycle of phosphorylation and dephosphorylation. Histochem Cell Biol 108:221–223

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Kleinberg ME (1999) Activation of the phagocyte NADPH oxidase protein p47(phox). Phosphorylation controls SH3 domain-dependent binding to p22(phox). J Biol Chem 274:19731–19737

    Google Scholar 

  • Huang R, Lian JP, Robinson D, Badwey JA (1998) Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks): separate signals are required for activation and inactivation of Paks. Mol Cell Biol 18:7130–7138

    CAS  PubMed  Google Scholar 

  • Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acids stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    CAS  PubMed  Google Scholar 

  • Johnson JL, Park J-W, El Benna J, Faust LP, Inanami O, Babior BM (1998) Activation of p47-phox, a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity. J Biol Chem 273:35147–35152

    Article  CAS  PubMed  Google Scholar 

  • Kami K, Takeya R, Sumimoto H, Kohda D (2002) Diverse recognition of non-PXXP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p. EMBO J 21:4268–4276

    Article  CAS  PubMed  Google Scholar 

  • Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, Brown GE, Cantly LC, Yaffe MB (2001) The PX domains of p47-phox and p40-phox bind to lipid products of PI(3)K. Nat Cell Biol 3:675–678

    Article  CAS  PubMed  Google Scholar 

  • Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W, Williams RL (2002) Binding of the PX domain of p47-phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21:5057–5068

    Article  CAS  PubMed  Google Scholar 

  • Karlsson A, Nixon JB, McPhail LC (2000) Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J Leukoc Biol 67:396–404

    CAS  PubMed  Google Scholar 

  • Kim C, Marchal CC, Penninger J, Dinauer MC (2003) The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions. J Immunol 171:4425–4430

    CAS  PubMed  Google Scholar 

  • Knaus UG, Morris S, Dong H-J, Chernoff J, Bokoch GM (1995) Regulation of human leukocyte p21-activated kinases through G-protein coupled receptors. Science 269:221–233

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Robinson JM (1991) A novel intracellular compartment with unusual secretory properties in human neutrophils. J Cell Biol 113:743–756

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Seguchi H (1994) Localization of NADPH oxidase in human polymorphonuclear leukocytes. J Histochem Cytochem 42:983

    Google Scholar 

  • Kobayashi T, Robinson JM, Seguchi H (1998) Identification of intracellular sites of superoxide production in stimulated neutrophils. J Cell Sci 111:81–91

    CAS  PubMed  Google Scholar 

  • Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67-phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274:25051–25060

    Article  CAS  PubMed  Google Scholar 

  • Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM (2000) Localized Rac activation dynamics visualized in living cells. Science 290:333–337

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD, Cheng D, Arnold RS, Edens WE (2000) Novel homologs of gp91 phox. Trends Biochem Sci 25:459–461

    Article  CAS  PubMed  Google Scholar 

  • Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47-phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    Article  CAS  PubMed  Google Scholar 

  • Lapouge K, Smith SJM, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67-phox in complex with Rac●GTP. Mol Cell 6:899–907

    CAS  PubMed  Google Scholar 

  • Lassègue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277-R297

    PubMed  Google Scholar 

  • Leto TL, Lomax KL, Volpp BD, Nunoi H, Sechler JMG, Nauseef WM, Clark RA, Gallin JI, Malech HL (1990) Cloning of a 67 kDa neutrophil oxidase factor with similarity to a noncatalytic region of p60-src. Science 248:727–730

    CAS  PubMed  Google Scholar 

  • Leto TL, Adams AG, DeMendez I (1994) Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654

    CAS  PubMed  Google Scholar 

  • Li JM, Shah AM (2003) Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47-phox subunit. J Biol Chem 278:12094–12100

    Google Scholar 

  • Li S, Yamauchi A, Marchal CC, Molitoris JK, Quilliam LA, Dinauer MC (2002) Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. J Immunol 169:5043–5051

    PubMed  Google Scholar 

  • Liang B, Petty HR (1992) Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J Cell Physiol 152:145–156

    CAS  PubMed  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao Z-S, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46

    Article  CAS  PubMed  Google Scholar 

  • Matsui S, Matsumoto S, Adach R, Kusui K, Hirayama A, Watanabe H, Ohashi K, Mizuno K, Yamaguchi T, Kasahara T, Suzuki K (2002) LIM-kinase1 modulates opsonized zymosan-triggered activation of macrophage-like U937 cells. Possible involvement of phosphorylation of cofilin and reorganization of the actin cytoskeleton. J Biol Chem 277:544–549

    Google Scholar 

  • Nathan CF (1987) Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 80:1550–1560

    Google Scholar 

  • Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 111:769–778

    Article  CAS  PubMed  Google Scholar 

  • Nauseef WM, Volpp BD, McCormick S, Leidal KG, Clark RA (1991) Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem 266:5911–5917

    Google Scholar 

  • Nisimoto Y, Motalebi S, Han C-H, Lambeth JD (1999) The p67-phox activation domain regulates electron flow from NADPH to flavin in cytochrome b558. J Biol Chem 274:22999–23005

    Article  CAS  PubMed  Google Scholar 

  • Nixon JB, McPhail LC (1999) Protein kinase C (PKC) isoforms translocate to Triton-insoluble fractions in stimulated human neutrophils: correlation of conventional PKC with activation of NAPDH oxidase. J Immunol 163:4574–4582

    CAS  PubMed  Google Scholar 

  • Park J-W, Babior BM (1997) Activation of the leukocyte NADPH oxidase subunit p47-phox by protein kinase C. A phosphorylation-dependent change in the conformation of the C-terminal end of p47-phox. J Biol Chem 36:7474–7480

    Google Scholar 

  • Pessach I, Leto TL, Malech HL, Levy R (2001) Essential requirement of cytosolic phospholipase A2 for stimulation of NADPH oxidase-associated diaphorase activity in granulocyte-like cells. J Biol Chem 276:33495–33503

    Google Scholar 

  • Ponting CP (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci 5:2533–2537

    Google Scholar 

  • Prince MO, Atkinson SJ, Knaus UG, Dinauer MC (2002) Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J Biol Chem 277:19220–19228

    Google Scholar 

  • Quinn MTC, Parkos CA, Jesaitis AJ (1989) The lateral organization of components of the membrane skeleton and superoxide generation in the plasma membrane of stimulated human neutrophils. Biochim Biophys Acta 987:83–94

    Article  CAS  PubMed  Google Scholar 

  • Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312

    Google Scholar 

  • Reeves EP, Dekker LV, Forbes LV, Wientjes FB, Grogan A, Pappin DJC, Segal AW (1999) Direct interaction between p47-phox and protein kinase C: evidence for targeting of protein kinase C by p47-phox in neutrophils. Biochem J 344:859–866

    Article  CAS  PubMed  Google Scholar 

  • Ren R, Mayer BJ, Cicchetti P, Baltimore D (1993) Identification of a ten-amino acid proline-rich SH3 binding site. Science 259:1157–1161

    CAS  PubMed  Google Scholar 

  • Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ (2001) Novel competitive inhibitor of NAD(P)H assembly attenuates vascular O2 and systolic blood pressure in mice. Circ Res 89:408–414

    CAS  PubMed  Google Scholar 

  • Robinson JM (1985) Improved localization of sites of phosphatases using cerium and cell permeabilization. J Histochem Cytochem 33:749–754

    CAS  PubMed  Google Scholar 

  • Robinson JM, Badwey JA (1995) The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol 103:163–180

    CAS  PubMed  Google Scholar 

  • Robinson JM, Badwey JA (2002) Rapid association of cytoskeletal remodeling proteins with the developing phagosomes of human neutrophils. Histochem Cell Biol 118:117–125

    CAS  PubMed  Google Scholar 

  • Robinson JM, Batten BE (1990) Localization of cerium-based reaction products by scanning laser reflectance confocal microscopy. J Histochem Cytochem 38:315–318

    CAS  PubMed  Google Scholar 

  • Robinson JM, Badwey JA, Karnovsky ML, Karnovsky MJ (1984) Superoxide release by neutrophils: synergistic effects of a phorbol ester and a calcium ionophore. Biochem Biophys Res Commun 122:734–739

    CAS  PubMed  Google Scholar 

  • Robinson JM, Kobayashi T, Seguchi H, Takizawa T (1999) Evaluation of neutrophil structure and function by electron microscopy: cytochemical studies. J Immunol Methods 232:169–178

    Article  CAS  PubMed  Google Scholar 

  • Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256:1459–1462

    CAS  PubMed  Google Scholar 

  • Scita G, Tenca P, Frittoli E, Tocchetti A, Innocenti M, Giardina G, Di Fiore PP (2002) Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J 19:2393–2398

    Article  Google Scholar 

  • Segal AW, West I, Wientjes F, Nugent JHA, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788

    CAS  PubMed  Google Scholar 

  • Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change in p47-phox to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801

    Article  CAS  PubMed  Google Scholar 

  • Shmelzer Z, Haddad N, Admon E, Pessach I, Leto TL, Eitan-Hazan Z, Hershfinkel M, Levy R (2003) Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J Cell Biol 162:683–692

    Article  CAS  PubMed  Google Scholar 

  • Sorescu D, Weiss D., Lassegue B, Clempus RE, Szöcs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor R, Griendling KK (2002) Superoxide production and expression of Nox family proteins in atherosclerosis. Circulation 105:1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Steinbeck ML, Khan AU, Karnovsky MJ (1992) Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem 267:13425–13433

    Google Scholar 

  • Suh Y-A, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by superoxide-generating oxidase Mox 1. Nature 401:79–82

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H, Kage Y, Nunoi H, Sasaki H, Nose T, Fukumaki Y, Ohno M, Minakomi S, Takeshige K (1994) Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A 91:5346–5349

    Google Scholar 

  • Swain SD, Helgerson SL, Davis AR, Nelson LK, Quinn MT (1997) Analysis of activation-induced conformational changes in p47-phox using tryptophan fluorescence spectroscopy. J Biol Chem 272:29502–29510

    Article  CAS  PubMed  Google Scholar 

  • Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H (2003) Novel human homologues of p47-phox and p67-phox participate in activation of superoxide producing NADPH oxidases. J Biol Chem 278:25234–25246

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL (2002) Expression of a functionally active gp91 phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries. Regulation by angiotensin II. Circ Res 90:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Turner M, Billadeau DD (2002) Vav proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2:476–486

    Article  CAS  PubMed  Google Scholar 

  • Vissers MCM, Day WA, Winterbourn CC (1985) Neutrophils adherent to a nonphagocytosable surface (glomerular basement membrane) produce oxidants only at the site of attachment. Blood 66:161–166

    CAS  PubMed  Google Scholar 

  • Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A 86:9563–9567

    Google Scholar 

  • Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell 108:809–821

    Article  CAS  PubMed  Google Scholar 

  • Wentworth P Jr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, Babior BM, Eschenmoser A, Lerner RA (2002) Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298:2195–2199

    Article  CAS  PubMed  Google Scholar 

  • Werner J (2004) GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci 117:143–153

    Google Scholar 

  • Xie Q, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Trosco T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthetase from mouse macrophages. Science 256:225–228

    CAS  PubMed  Google Scholar 

  • Zhao T, Benard V, Bohl BP, Bokoch GM (2003) The molecular basis for adhesion mediated suppression of reactive oxygen species generated by human neutrophils. J Clin Invest 122:1732–1740

    Article  Google Scholar 

Download references

Acknowledgements

Research from the authors laboratories cited herein was supported by NIH grants AI-23323 and PO1 DE 13499. Figures 3, 5, and 6 were reprinted with permission of Histochemistry and Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Robinson.

Additional information

John A. Badwey has recently died

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J.M., Ohira, T. & Badwey, J.A. Regulation of the NADPH-oxidase complex of phagocytic leukocytes. Recent insights from structural biology, molecular genetics, and microscopy. Histochem Cell Biol 122, 293–304 (2004). https://doi.org/10.1007/s00418-004-0672-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0672-2

Keywords

Navigation