Skip to main content
Log in

Histochemical in situ identification of bovine embryonic blood cells reveals differences to the adult haematopoietic system and suggests a close relationship between haematopoietic stem cells and primordial germ cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Cryostat sections of bovine embryos of exactly known age (obtained from artificial insemination), ranging from 32 to 60 days post-insemination, were treated with a wide range of antibodies directed against cell surface antigens or lineage-specific factors in order to demonstrate different types of fetal blood cells and their precursors. An antibody specific to bovine c-kit (bk-1) stained not only presumptive haematopoietic stem cells in the dorsal aorta and the embryonic liver, but also a subpopulation of putative primordial germ cells in the gonadal anlage, the latter being further characterised by a positive labelling with the lectins STA, WFA and WGA and a histochemical reaction for alkaline phosphatase. The antibody against CD 45, commonly regarded as a pan-leukocyte marker, reacted in the bovine embryo with different types of blood cells, as well as with presumptive vasculogenetic cells and a subpopulation of putative primordial germ cells. CD 61 immunoreaction proved to be a useful tool for demonstrating megakaryocytopoiesis in the embryonic liver, in addition to the lumen of blood vessels and the mesonephros. Staining with BM-2 was restricted to a single population of medium-sized, round to oval cells, forming small groups within the parenchymal strands of the liver. Characterised furthermore by a U-shaped nucleus, this BM-2-positive cell type apparently represents a developmental stage in the granulopoietic lineage. B-lymphocytopoiesis in the bovine liver was detected with antibodies directed against WC-4 and IgM, but not until day 58 post-insemination. Using antibodies to CD 14, no positive results could be obtained in embryonic tissues, although anti-CD 14-positive macrophages were easily recognised in lymph nodes of adult bovines. The antibody against CD 68, however, identified two populations of primitive macrophages in our samples. One population was located in parenchymal strands of the embryonic liver, probably acting as nursing cells for haematopoietic foci, and the other was observed intravasally in the sinusoids of the liver, most probably representing primitive Kupffer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a, b
Fig. 3 Fig. 4 Fig. 5a, b
Fig. 6 Fig. 7 Fig. 8
Fig. 9a–c
Fig. 10a–f
Fig. 11a, b
Fig. 12a, b Fig. 13a, b
Fig. 14a, b Fig. 15a, b

Similar content being viewed by others

References

  • Ackermann MR, DeBey BM, Stabel TJ, Gold JH, Register KB, Meehan JT (1994) Distribution of anti-CD68 (EBM11) immunoreactivity in formalin-fixed, paraffin-embedded bovine tissues. Vet Pathol 31:340–348

    CAS  PubMed  Google Scholar 

  • Bernex F, De Sepulveda P, Kress Ch, Elbaz C, Delois C, Panthier JJ (1996) Spatial and temporal patterns of c-kit-expressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos. Development 122:3023–3033

    CAS  PubMed  Google Scholar 

  • Berthon P, Hopkins J (1996) Ruminant cluster CD 14. Vet Immunol Immunopathol 52:245–248

    Article  CAS  PubMed  Google Scholar 

  • Bertram TA (1986) Intravascular macrophages in lungs of pigs infected with Haemophilus pleuropneumoniae. Vet Pathol 23:681–691

    CAS  PubMed  Google Scholar 

  • Brodersen R, Bijlsma F, Gori K, Jensen KT, Chen W, Dominguez J, Haverson K, Moore PF, Saalmüller A, Sachs D, Slierendrecht WJ, Stokes C, Vainio O, Zuckermann F, Aasted B (1998) Analysis of the immunological cross reactivities of 213 well-characterized monoclonal antibodies with specificities against various leucocyte surface antigens of human and 11 animal species. Vet Immunol Immunopathol 64:1–13

    Article  CAS  PubMed  Google Scholar 

  • Broudy VC (1997) Stem cell factor and hematopoiesis. Blood 90:1345–1364

    CAS  PubMed  Google Scholar 

  • Chaganti RSK, Ladanyi M, Samaniego F, Offit K, Reuter V, Jhanwar SC, Bosl GJ (1989) Leukemic differentiation of a mediastinal germ cell tumor. Genes Chromosomes Cancer 1:83–87

    CAS  PubMed  Google Scholar 

  • Crosby HA, Nijjar S, de Ville de Goyet J, Kelly DA, Strain AJ (2002) Progenitor cells of the biliary epithelial cell lineage. Cell Dev Biol 13:397–403

    Article  CAS  Google Scholar 

  • De Felici M, Pesce M (1994) Interactions between migratory primordial germ cells and cellular substrates in the mouse. In: Marsh J, Goode J (eds) Germline development (Ciba Foundation Symposium 182). Wiley, Chichester, pp 140–153

  • Delassus S, Titley I, Enver T (1999) Functional and molecular analysis of hematopoietic progenitors derived from the aorta-gonad-mesonephros region of the mouse embryo. Blood 94:1495–1503

    CAS  PubMed  Google Scholar 

  • Donovan PJ (1994) Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol 29:189–225

    CAS  PubMed  Google Scholar 

  • Durcova-Hills G, Ainscough JFX, McLaren A (2001) Pluripotential stem cells derived from migrating primordial germ cells. Differentiation 68:220–226

    Article  CAS  PubMed  Google Scholar 

  • Faust N, Huber MC, Sippel AE, Bonifer C (1997) Different macrophage populations develop from embryonic/fetal and adult hematopoietic tissues. Exp Hematol 25:432–444

    CAS  PubMed  Google Scholar 

  • Geissler EN, Ryan MA, Housman DE (1988) The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55:185–192

    CAS  PubMed  Google Scholar 

  • Gomori G (1952) Microscopic histochemistry, principles and practice. University of Chicago Press, Chicago

  • Gupta VK, McConell I, Dalziel RG, Hopkins J (1996) Identification of the sheep homologue of the monocytic cell surface molecule, CD14. Vet Immunol Immunopathol 51:89–99

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez M, Forster FI, McConell SA, Cassidy JP, Pollock JM, Bryson DG (1999) The detection of CD2+, CD4+, CD8+, and WC1+ T lymphocytes, B cells and macrophages in fixed and paraffin embedded bovine tissue using a range of antigen recovery and signal amplification techniques. Vet Immunol Immunopathol 71:321–334

    Article  CAS  PubMed  Google Scholar 

  • Heimdal K, Evensen SA, Stein AE, Fosså SD, Hirscberg H, Langholm R, Brøgger A, Møller P (1991) Karyotyping of a hematologic neoplasia developing shortly after treatment for cerebral extragonadal germ cell tumor. Cancer Genet Cytogenet 57:41–46

    Article  CAS  PubMed  Google Scholar 

  • Hikono H, Ohta M, Kubota T, Zhou J-H, Inumaru S, Sakurai M (1999) Production and characterization of monoclonal antibodies that recognize bovine kit receptor. Vet Immunol Immunopath 68:101–112

    Article  CAS  Google Scholar 

  • Hikono H, Ohta M, Zhou J-H, Sakurai M (2001a) Expression and distribution of the kit receptor in bovine bone marrow cells. Am J Vet Res 62:974–977

    CAS  PubMed  Google Scholar 

  • Hikono H, Ohta M, Sakurai M, Momotani E (2001b) Expression of kit, the receptor for stem cell factor, in bovine peripheral blood. J Vet Med Sci 63:321–324

    Article  CAS  PubMed  Google Scholar 

  • Horie K, Takakura K, Taii S, Narimoto K, Noda Y, Nishikawa S, Nakayama H, Fujita J, Mori T (1991) The expression of c-kit protein during oogenesis and early embryonic development. Biol Reprod 45:547–552

    CAS  PubMed  Google Scholar 

  • Horie K, Fujita J, Takakura K, Kanzaki H, Kaneko Y, Iwai M, Nakayama H, Mori T (1992) Expression of c-kit protein during placental development. Biol Reprod 47:614–620

    CAS  PubMed  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    CAS  PubMed  Google Scholar 

  • Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci U S A 89:1502–1506

    CAS  PubMed  Google Scholar 

  • Jaffredo T, Gautier R, Brajeul V, Dieterlen-Lièvre F (2000) Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev Biol 224:204–214

    Article  CAS  PubMed  Google Scholar 

  • Jones M, Cordell JL, Beyers AD, Tse AGD, Mason DY (1993) Detection of T and B ells in many animal species using cross-reactive anti-peptide antibodies. J Immunol 150:5429–5435

    CAS  PubMed  Google Scholar 

  • Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland NG, Parada LF (1991) Embryonic RNA expression patterns of the c-kit receptor and cognate ligand suggest multiple functional roles in mouse development. EMBO J 10:2425–2435

    CAS  PubMed  Google Scholar 

  • Kubota T, Hikono H, Sasaki E, Sakurai M (1994) Sequence of a bovine c-kit proto-oncogene cDNA. Gene 141:305–306

    Article  CAS  PubMed  Google Scholar 

  • Kujat R, Rose C, Wrobel KH (1993) The innervation of the bovine ductus deferens: comparison of a modified acetylcholinesterase-reaction with immunoreactivities of cholinacetyl-transferase and panneuronal markers. Histochemistry 99:231–239

    CAS  PubMed  Google Scholar 

  • Labastie MC, Cortés F, Roméo PH, Dulac C, Péault B (1998) Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 92:3624–3635

    CAS  PubMed  Google Scholar 

  • Lawson KA, Hage WJ (1994) Clonal analysis of the origin of primordial germ cells in the mouse. In: Marsh J, Goode J (eds) Germline development (Ciba Foundation Symposium 182). Wiley, Chichester, pp 68–91

  • Lyman SD, Jacobsen SEW (1998) C-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:1101–1134

    CAS  PubMed  Google Scholar 

  • Maeda H, Yamagata A, Nishikawa S, Yoshinga K, Kobayashi S, Nishi K, Nishikawa SI (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375

    CAS  PubMed  Google Scholar 

  • Manova K, Bachvarova RF (1991) Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Dev Biol 146:312–324

    CAS  PubMed  Google Scholar 

  • Marcos MAR, Morales-Alcelay S, Godin IE, Dieterlen-Lièvre F, Copin SG, Gaspar M-L (1997) Antigenic phenotype and gene expression pattern of lymphohemopoietic progenitors during early mouse ontogeny. J Immunol 158:2627–2637

    CAS  PubMed  Google Scholar 

  • Marshall C, Thrasher AJ (2001) The embryonic origins of human hematopoiesis. Br J Hematol 112:838–850

    Article  CAS  Google Scholar 

  • Matsui Y, Zsebo K, Hogan BLM (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    CAS  PubMed  Google Scholar 

  • McGadey J (1970) A tetrazolium method for non-specific alkaline phosphatase. Histochemie 23:180–184

    CAS  PubMed  Google Scholar 

  • Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906

    CAS  PubMed  Google Scholar 

  • Molyneaux KA, Stallock J, Schaible K, Wylie C (2001) Time-lapse analysis of living mouse germ cell migration. Development 240:488–498

    Article  CAS  Google Scholar 

  • Motro B, Van der Kooy D, Rossant J, Teith A, Bernstein A (1991) Contiguous pattern of c-kit and Steel expression: analysis of mutation at the W and SI loci. Development 113:1207–1221

    CAS  PubMed  Google Scholar 

  • Motzer RJ, Amsterdam A, Prieto V, Sheinfeld J, Murty VVVS, Mazumdar M, Bosl GJ, Chaganti RSK, Reuter VE (1998) Teratoma with malignant transformation: diverse malignant histologies arising in men with germ cell tumors. J Urol 159:133–138

    CAS  PubMed  Google Scholar 

  • Murakami K, Inumaru S, Yokoyama T, Okada K, Sentsui H (1999) Expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor on B-1a cell from persistent lymphocytosis (PL) cows and lymphoma cell induced by bovine leukaemia virus. Vet Immunol Immunopathol 68:49–59

    Article  CAS  PubMed  Google Scholar 

  • Naessens J, Howard CJ (1993) Second workshop on ruminant leucocyte antigens. Vet Immunol Immunopathol 39:1–10

    Article  PubMed  Google Scholar 

  • Naito M, Hasegawa G, Takahashi K (1997) Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 39:350–364

    Article  CAS  PubMed  Google Scholar 

  • Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, Besmer P (1989) Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice: evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3:816–826

    CAS  PubMed  Google Scholar 

  • Ogawa M, Nishikawa S, Yoshinaga K, Hayashi SI, Kunisada T, Nakao J, Kina T, Sudo T, Kodama H, Nishikawa SI (1993) Expression and function of c-kit in fetal hemopoietic progenitor cells: transition from the early c-kit-independent to the late c-kit-dependent wave of hemopoiesis in the murine embryo. Development 117:1089–1098

    CAS  PubMed  Google Scholar 

  • Ohtaka T, Matsui Y, Obinata M (1999) Hematopoietic development of primordial germ cell-derived mouse embryonic germ cells in culture. Biochem Biophys Res Commun 260:475–482

    Article  CAS  PubMed  Google Scholar 

  • Opdecamp K, Nakayama A, Nguyen M-T, Hodgkinson CA, Pavan WJ, Arnheiter H (1997) Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 24:2377–2386

    Google Scholar 

  • Orr-Urtreger A, Avivi A, Zimmer Y, Givol D, Yarden Y, Lonai P (1990) Developmental expression of c-kit, a protooncogene encoded by the W locus. Development 109:911–923

    CAS  PubMed  Google Scholar 

  • Palacios R, Nishikawa SI (1992) Developmentally regulated cell surface expression and function of the c-kit receptor during lymphocyte ontogeny in the embryo and adult mice. Development 115:1133–1147

    CAS  PubMed  Google Scholar 

  • Péault B, Oberlin E, Tavian M (2002) Emergence of hematopoietic stem cells in the human embryo. C R Biologies 325:1021–1026

    Article  PubMed  Google Scholar 

  • Pesce M, Farrace MG, Piacentini M, Dolci S, De Felici M (1993) Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 118:1089–1094

    CAS  PubMed  Google Scholar 

  • Qiu F, Ray P, Brown K, Braker PE, Jhanwar S, Ruddle RH, Besmer P (1988) Primary structure of c-kit, a protooncogene encoded by the W locus. Development 109:911–923

    Google Scholar 

  • Rathkolb B, Pohlenz JF, Wohlsein P (1997) Identification of leucocyte surface antigens in paraffin-embedded bovine tissues using modified formalin dichromate fixation. Histochem J 29:487–493

    Article  CAS  PubMed  Google Scholar 

  • Rebelatto MC, Mead C, HogenEsch H (2000) Lymphocyte populations and adhesion molecule expression in bovine tonsils. Vet Immunol Immunopathol 73:15–29

    Article  CAS  PubMed  Google Scholar 

  • Rich IN (1995) Primordial germ cells are capable of producing cells of the hematopoietic system in vitro. Blood 86:463–472

    CAS  PubMed  Google Scholar 

  • Saito A, Watanabe K, Kusakabe T, Abe M, Suzuki T (1998) Mediastinal mature teratoma with coexistence of angiosarcoma, granulocytic sarcoma and a hematopoietic region in the tumor: a rare case of association between haematological malignancy and mediastinal germ cell tumor. Pathol Int 48:749–753

    CAS  PubMed  Google Scholar 

  • Sanchez M-J, Holmes A, Miles C, Dzierzak E (1996) Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5:513–525

    CAS  PubMed  Google Scholar 

  • Scaravaglio P, Facta P, Ceresole B, Guglielminetti T, Berruti A, Pautasso M, Mazza U, Saglio G, Rege-Cambrin G (1996) Chromosome abnormalities in a patient with acute myeloid leukemia following mediastinal germ cell tumor. Cytogenetics 91:175

    Article  Google Scholar 

  • Schachtner SK, Wang Y, Baldwin HS (2000) Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol 22:157–165

    CAS  PubMed  Google Scholar 

  • Sopp P, Kwong LS, Howard CJ (1996) Identification of bovine CD14. Vet Immunol Immunopathol 52:323–328

    Article  CAS  PubMed  Google Scholar 

  • Tan JC, Nocka KH, Ray P, Traktman P, Besmer P (1990) The dominant W42 spotting phenotype results from a missense mutation in the c-kit receptor kinase. Science 247:209–212

    CAS  PubMed  Google Scholar 

  • Tavian M, Hallais M-F, Péault B (1999) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126:793–803

    CAS  PubMed  Google Scholar 

  • Teyssier-le Discorde M, Prost S, Nandrot E, Kirszenbaum M (1999) Spatial and temporal mapping of c-kit and its ligand, stem cell factor expression during human embryonic haemopoiesis. Br J Haematol 107:247–253

    Article  PubMed  Google Scholar 

  • Timens W, Kamps W (1997) Hemopoiesis in human fetal and embryonic liver. Microsc Res Tech 39:387–397

    Article  CAS  PubMed  Google Scholar 

  • Timens W, Kamps WA, Rozeboom-Uiterwijk T, Poppema S (1990) Haemopoiesis in human fetal and embryonic liver. Virchows Archiv A Pathol Anat 416:429–436

    CAS  Google Scholar 

  • Tisdall DJ, Fidler AE, Smith P, Quirke LD, Stent VC, Heath DA, McNatty KP (1999) Stem cell factor and c-kit gene expression and protein localization in the sheep ovary during fetal development. J Reprod Fertil 116:277–291

    CAS  PubMed  Google Scholar 

  • Van Kampen C, Mallard BA, Wilkie BN (1999) Adhesion molecules and lymphocyte subsets in milk and blood of periparturient Holstein cows. Vet Immunol Immunopathol 69:23–32

    Article  PubMed  Google Scholar 

  • Winquist G (1954) Morphology of the blood and the hemopoietic organs in cattle under normal and some experimental conditions. Acta Anat 22(suppl 21)

  • Woodruff K, Wang N, May W, Adrone E, Denny C, Feig SA (1995) The clonal nature of mediastinal germ cell tumors and acute myelogenous leukemia. Cancer Genet Cytogenet 79:25–31

    Article  CAS  PubMed  Google Scholar 

  • Wrobel K-H, Süss F (1998) Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anat Embryol 197:451–467

    CAS  PubMed  Google Scholar 

  • Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:3341–3351

    CAS  PubMed  Google Scholar 

  • Yokomizo T, Ogawa M, Osato M, Kanno T, Yoshida H, Fujimoto T, Fraser S, Nishikawa S, Okada H, Satake M, Noda T, Nishikawa SI, Ito Y (2001) Requirement of Runx1/AML1/PEBP2αB for the generation of haematopoietic cells from endothelial cells. Genes to Cells 6:13–23

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Takakura N, Hirashima M, Kataoka H, Tsuchida K, Nishikawa S, Nishikawa SI (1998) Hematopoietic tissues, as a playground of receptor tyrosine kinases of the PDGF-receptor family. Dev Comp Immunol 22:321–332

    Article  PubMed  Google Scholar 

  • Yoshinaga K, Nishikawa S, Ogawa M, Hayashi SI, Kunisada T, Fujimoto T, Nishikawa SI (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113:689–699

    CAS  PubMed  Google Scholar 

  • Young HM (1999) Embryological origin of interstitial cells of Cajal. Microsc Res Tech 47:303–308

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Takeya M, Ling X, Nagasaki A, Takahashi K (1996) Interspecies reactivities of anti-human macrophage monoclonal antibodies to various animal species. J Histochem Cytochem 44:845–853

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the excellent technical assistance of Mrs. I. Hees, Mrs. M. Schimmel, Mrs. U. Schmitt and Mrs. E. Stauber, and the skilful photographic work of Mrs. A. Zenker and Mr. T. Maurer. We thank Mrs. C. Ross-Cavanna for linguistic help. We are especially grateful to H. Hikono, National Institute of Animal Health, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305, Japan, for his kind donation of anti-c-kit (bk1–6) antibodies. The monoclonal antibody M1/70.15.11.5.2 developed by T.A. Springer was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA 52242, USA. This research was financially supported by DFG grant Wr 7/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Kritzenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kritzenberger, M., Wrobel, KH. Histochemical in situ identification of bovine embryonic blood cells reveals differences to the adult haematopoietic system and suggests a close relationship between haematopoietic stem cells and primordial germ cells. Histochem Cell Biol 121, 273–289 (2004). https://doi.org/10.1007/s00418-004-0629-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0629-5

Keywords

Navigation