Skip to main content
Log in

A computer-controlled system for measuring dark adaptation and other psychophysical functions

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

• Background: Psychophysical thresholds, including dark-adaptation functions and increment threshold sensitivities, are useful for the early detection and diagnosis of visual pathologies. However, few instruments have been designed or adapted for their routine clinical measurement. • Methods: Here we describe an instrument prototype designed to meet this need, which we refer to as the PULS (Programmier-barer Universeller Licht-Stimulator). The instrument is computer-controlled and fully automated. It allows direct control over target location, luminance, size, duration and temporal profile and over background luminance and spectral composition. It also incorporates an efficient and statistically rigorous strategy for determining threshold. • Results: We present examples of psychophysical functions — dark-adaptation curves, increment threshold sensitivities, estimates of temporal summation in the dark and during the time course of dark adaptation — which have been measured by the PULS prototype in normal observers and clinical patients. • Conclusions: The PULS instrument provides an automatic and efficient means of measuring dark adaptation and other psychophysical functions. It determines threshold by a more rigorous and faster method than is conventionally employed in clinical adaptometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpern M (1971) Rhodopsin kinetics in the human eye. J Physiol Lond 217: 447–471

    PubMed  CAS  Google Scholar 

  2. Bloch AM (1885) Experiences sur la vision. Paris Soc Biol Mem 37: 493–495

    Google Scholar 

  3. Ernst W, Faulkner DJ, Hogg CR, Powell DJ, Arden GB, Vaegan (1983) An automated static perimeter/adaptometer using light emitting diodes. Br J Ophthalmol 67: 431–442

    Article  PubMed  CAS  Google Scholar 

  4. Friedburg C (1997) Zeitliche und räumliche Charakteristika der Detektion visueller Einzelreize während Hell- und Dunkeladaptation. Dissertation, University of Tübingen, Germany

    Google Scholar 

  5. Friedburg C, Sharpe LT. Zrenner E (1996) Cone and rod temporal summation during dark adaptation. Invest Ophthalmol Vis Sci 37: 728

    Google Scholar 

  6. Frunkes TE, Lange G, Denny N, Beckzowska I (1992) Influence of rod adaptation upon cone responses to light offset in humans. I. Results in normal observers. Vis Neurosci 8: 8–89

    Google Scholar 

  7. Hall JL (1981) Hybrid adaptive procedure for estimation of psychometric functions. J Acoust Soc Am 69: 1763–1769

    Article  PubMed  CAS  Google Scholar 

  8. Harms H (1960) Die Bedeutung einer einheitlichen Prüfweise aller Sehfunktionen. Ber Dtsch Ophthalmol Ges 63: 281–285

    Google Scholar 

  9. Jacobson SG, Voigt WJ, Parel JM, Apathy PP, Nghiem PL, Myers SW, Patella VM (1986) Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 93: 1604–1611

    PubMed  CAS  Google Scholar 

  10. Jayle GE, Ourgaud AG, Holmes WJ, Duke-Elder S (1959) Night vision. Thomas, Springfield, Ill

    Google Scholar 

  11. Krauskopf J, Mollon JD (1971) The independence of temporal integration properties of individual chromatic mechanisms in the human eye. J Physiol Lond 219: 611–623

    PubMed  CAS  Google Scholar 

  12. Lange G, Frumkes TE (1992) Influence of rod adaptation upon cone response to light offset in humans. II. Results in an observer with exaggerated suppressive rod-cone interaction. Vis Neurosci 8: 91–95

    Article  PubMed  CAS  Google Scholar 

  13. Macmillan NA, Creelman CD (1991) Detection theory: a user’s guide. Cambridge University Press, Cambridge, UK, pp 183–206

    Google Scholar 

  14. Montellese S, Sharpe LT, Brown JL (1979) Changes in critical duration during dark-adaptation. Vision Res 19: 1147–1153

    Article  PubMed  CAS  Google Scholar 

  15. O’Mara PA, Zwick H, Beatrice ES, Lund DJ (1982) Microprocessor-controlled light-emitting diode dark adaptometer. Med Biol Eng Comput 20: 70–76

    Article  PubMed  Google Scholar 

  16. Sharpe LT, Fach C, Nordby K (1988) Temporal summation in the achromat. Vision Res 28: 1263–1269

    Article  PubMed  CAS  Google Scholar 

  17. Steward BR (1972) Temporal summation during dark adaptation. J Opt Soc Am 62: 449–457

    Article  Google Scholar 

  18. Taylor MM, Creelman CD (1967) PEST: efficient estimates of probability functions. J Acoust Soc Am 41: 782–787

    Article  Google Scholar 

  19. Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35: 2503–2522

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedburg, C., Sharpe, L.T., Beuel, S. et al. A computer-controlled system for measuring dark adaptation and other psychophysical functions. Graefe’s Arch Clin Exp Ophthalmol 236, 31–40 (1998). https://doi.org/10.1007/s004170050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004170050039

Keywords

Navigation