Skip to main content

Advertisement

Log in

Choroidal morphologic features in central serous chorioretinopathy using ultra-widefield optical coherence tomography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To analyze the choroidal morphological changes in central serous chorioretinopathy (CSC) using ultra-widefield (UWF)-optical coherence tomography (OCT).

Methods

This single-center, case–control study included 65 CSC eyes (52 males; age, 55.6 ± 13.0 years) and 65 healthy eyes (50 males; age, 57.1 ± 17.9 years). UWF-OCT (viewing angle, 200°) with real-shape correction was used to create an automated choroidal thickness (CT) map. The CT map had three sub-areas: the central (0–30°), middle (30–60°), and peripheral areas (60–100°), and was divided by vertical and horizontal lines. Differences in the CT and the CT change rate (CTCR) from the central to peripheral areas were examined between the CSC and control groups after adjusting for subjects’ demographic and clinical factors. Furthermore, we assessed the vortex veins dilation patterns (VVDP) in the macula and examined the CT and the CTCR differences between CSC patients and controls for each VVDP.

Results

CSC patients had greater CT than those of the controls in all sectors (CSC vs. controls, the peripheral area: supratemporal 284.4 ± 71.2 μm vs. 220.4 ± 71.2 μm, infratemporal 263.3 ± 69.2 μm vs. 195.3 ± 52.3 μm, supranasal 251.9 ± 70.3 μm vs. 189.5 ± 58.1 μm, infranasal 193.6 ± 71.2 μm vs. 146.3 ± 48.9 μm, P < 0.0001 for all sectors). The CTCR was apparently larger in CSC eyes than controls only for the upper-dominant type of VVDP (CSC patients vs. controls, supratemporal 32.1 ± 9.9% vs. 4.6 ± 23.1%, infratemporal 44.0 ± 11.2% vs. 25.6 ± 16.8%, supranasal 42.6 ± 9.8% vs. 22.2 ± 19.4%, infranasal 57.6 ± 41.2% vs. 41.2 ± 13.9%, P < 0.0001 for all sectors).

Conclusions

CSC has a thicker choroid, even in the peripheral areas, and the macular choroidal thickening was more severe in the upper-dominant type of VVDP. VVDP may affect the location of excessive fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shiragami C, Takasago Y, Osaka R et al (2018) Clinical features of central serous chorioretinopathy with type 1 choroidal neovascularization. Am J Ophthalmol 193:80–86. https://doi.org/10.1016/j.ajo.2018.06.009

    Article  PubMed  Google Scholar 

  2. Spaide RF, Campeas L, Haas A et al (1996) Central serous chorioretinopathy in younger and older adults. Ophthalmology 103:2070–9. https://doi.org/10.1016/s0161-6420(96)30386-2

    Article  CAS  PubMed  Google Scholar 

  3. Spaide RF, Hall L, Haas A et al (1996) Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina 16:203–213. https://doi.org/10.1097/00006982-199616030-00004

    Article  CAS  PubMed  Google Scholar 

  4. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  5. Srinivasan VJ, Adler DC, Chen Y et al (2008) Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci 49:5103–5110. https://doi.org/10.1167/iovs.08-2127

    Article  PubMed  Google Scholar 

  6. Shiihara H, Sonoda S, Terasaki H et al (2020) Quantitative analyses of diameter and running pattern of choroidal vessels in central serous chorioretinopathy by en face images. Sci Rep 10:9591. https://doi.org/10.1038/s41598-020-66858-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sonoda S, Sakamoto T, Kuroiwa N et al (2016) Structural changes of inner and outer choroid in central serous chorioretinopathy determined by optical coherence tomography. PLoS One 11:e0157190. https://doi.org/10.1097/IAE.0000000000003452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hiroe T, Kishi S (2018) Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retina 2:152–161. https://doi.org/10.1016/j.oret.2017.05.013

    Article  PubMed  Google Scholar 

  9. Imamura Y, Fujiwara T, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473. https://doi.org/10.1097/IAE.0b013e3181be0a83

    Article  PubMed  Google Scholar 

  10. Jirarattanasopa P, Ooto S, Tsujikawa A et al (2012) Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy. Ophthalmology 119:1666–1678. https://doi.org/10.1016/j.ophtha.2012.02.021

    Article  PubMed  Google Scholar 

  11. Spaide RF, Gemmy Cheung CM, Matsumoto H et al (2022) Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders. Prog Retin Eye Res 86:100973. https://doi.org/10.1016/j.preteyeres.2021.100973

    Article  CAS  PubMed  Google Scholar 

  12. Jeong S, Kang W, Noh D et al (2022) Choroidal vascular alterations evaluated by ultra-widefield indocyanine green angiography in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 260(6):1887–1898. https://doi.org/10.1007/s00417-021-05461-0

    Article  CAS  PubMed  Google Scholar 

  13. Bacci T, Oh DJ, Singer M et al (2022) Ultra-widefield indocyanine green angiography reveals patterns of choroidal venous insufficiency influencing pachychoroid disease. Invest Ophthalmol Vis Sci 63(1):17. https://doi.org/10.1167/iovs.63.1.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jung JJ, Yu DJG, Ito K et al (2020) Quantitative assessment of asymmetric choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine green angiography. Invest Ophthalmol Vis Sci 61:50. https://doi.org/10.1167/iovs.61.8.50

    Article  PubMed  PubMed Central  Google Scholar 

  15. Izumi T, Maruko I, Kawano T et al (2022) Morphological differences of choroid in central serous chorioretinopathy determined by ultra-widefield optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 260:295–301. https://doi.org/10.1007/s00417-021-05380-0

    Article  PubMed  Google Scholar 

  16. Nishihara S, Maruko I, Izumi T et al (2022) Peripheral choroidal thickness determined by widefield optical coherence tomography in eyes with central serous chorioretinopathy. Retina 42(8):1450–1454. https://doi.org/10.1097/IAE.0000000000003478

    Article  CAS  PubMed  Google Scholar 

  17. Ishikura M, Muraoka Y, Nishigori N et al (2022) Wide field choroidal thickness of eyes with central serous chorioretinopathy examined by swept-source optical coherence tomography. Ophthalmol Retina 42(8):1450–1454. https://doi.org/10.1097/IAE.0000000000003478

    Article  CAS  Google Scholar 

  18. Matsumoto H, Kishi S, Mukai R et al (2019) Remodeling of macular vortex veins in pachychoroid neovasculopathy. Sci Rep 9:14689. https://doi.org/10.1038/s41598-019-51268-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35:1–9. https://doi.org/10.1097/IAE.0000000000000331

    Article  CAS  PubMed  Google Scholar 

  20. Wei WB, Xu L, Jonas JB et al (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180. https://doi.org/10.1016/j.ophtha.2012.07.048

    Article  PubMed  Google Scholar 

  21. Barteselli G, Chhablani J, El-Emam S et al (2012) Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology 119:2572–2578. https://doi.org/10.1016/j.ophtha.2012.06.065

    Article  PubMed  Google Scholar 

  22. Hirata M, Tsujikawa A, Matsumoto A et al (2011) Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 52:4971–4978. https://doi.org/10.1167/iovs.11-7729

    Article  PubMed  Google Scholar 

  23. Cheung CMG, Lee WK, Koizumi H et al (2019) Pachychoroid disease. Eye (Lond) 33(1):14–33. https://doi.org/10.1038/s41433-018-0158-4

    Article  PubMed  Google Scholar 

  24. Matsumoto K, Suehira N, Tomatsu N (2015) Tomographic imaging apparatus and photographing method. United States Patent 9149181 B2. https://ppubs.uspto.gov/pubwebapp/ Accessed 23 Oct 202

  25. Touhami S, Philippakis E, Mrejen S et al (2020) Topographic variations of choroidal thickness in healthy eyes on swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 61:38. https://doi.org/10.1167/iovs.61.3.38

    Article  PubMed  PubMed Central  Google Scholar 

  26. Imanaga N, Terao N, Nakamine S et al (2021) Scleral thickness in central serous chorioretinopathy. Ophthalmol Retina 5:285–291. https://doi.org/10.1016/j.oret.2020.07.011

    Article  PubMed  Google Scholar 

  27. Imanaga N, Terao N, Sawaguchi S et al (2022) Clinical factors related to loculation of fluid in central serous chorioretinopathy. Am J Ophthalmol 235:197–203. https://doi.org/10.1016/j.ajo.2021.09.009

    Article  PubMed  Google Scholar 

  28. Spaide RF, Fisher YL, Ngo WK et al (2022) Regional scleral thickness as a risk factor for central serous chorioretinopathy. Retina 42(7):1231–1237. https://doi.org/10.1097/IAE.0000000000003485

    Article  CAS  PubMed  Google Scholar 

  29. Kuroda Y, Ooto S, Yamashiro K et al (2016) Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol 169:199–207. https://doi.org/10.1016/j.ajo.2016.06.043

    Article  PubMed  Google Scholar 

  30. Spaide RF, Ryan EH Jr (2015) Loculation of fluid in the posterior choroid in eyes with central serous chorioretinopathy. Am J Ophthalmol 160:1211–1216. https://doi.org/10.1016/j.ajo.2015.08.018

    Article  PubMed  Google Scholar 

  31. Hayreh SS, Baines JA (1973) Occlusion of the vortex veins. An experimental study. Br J Ophthalmol 57:217–238. https://doi.org/10.1136/bjo.57.4.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinoshita T, Mitamura Y, Shinomiya K et al (2017) Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol 101(3):360–364. https://doi.org/10.1136/bjophthalmol-2016-308594

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the orthoptists Masatoshi Tomita, Kikuko Toyodome, and the staff at the Kagoshima University Hospital for their support in the data collection process. We would like to thank Editage (www.editage.com) for English language editing.

Funding

This study was supported by JSPS KAKENHI (grant number 21H03095).

Author information

Authors and Affiliations

Authors

Contributions

Conception of design and conduct: RF, SS, HT, HS, NM, JH, TS, acquisition of the data: RF, NM, JH, management of data: RF, SS, NM, analysis of data: RF, SS, HS, JH, interpretation of the results: RF, SS, HT, HS, NM, JH, TS, preparation of articles: RF, HT, TS, and review and approval of the manuscript: RF, SS, HT, HS, NM, JH, TS.

Corresponding author

Correspondence to Taiji Sakamoto.

Ethics declarations

Ethics approval

This study was approved by the ethics committee of Kagoshima University, Kagoshima, Japan (No.16012). All the procedures were conducted in accordance with the tenets of the Declaration of Helsinki.

Conflict of interest

No conflicting relationships exist for any author.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funatsu, R., Sonoda, S., Terasaki, H. et al. Choroidal morphologic features in central serous chorioretinopathy using ultra-widefield optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 261, 971–979 (2023). https://doi.org/10.1007/s00417-022-05905-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05905-1

Keywords

Navigation